
Department of Informatics

Bachelor Thesis

An Edge-Based Approach to
Changeable 2D Landscapes for

Computer Games

Tobias Zwick
2011-03-23

Supervisors
Dr. Werner Hansmann
Prof. Dr. Leonie Dreschler-Fischer

 2

Preface
On the 23rd of May 2009, the source code of the Clonk game engine was officially released
under the ISC license (a permissive open source license) after fifteen years of being distributed
as shareware. A group of hobby programmers and enthusiasts in which I was part of founded the
OpenClonk1 project soon after the game engine was made open source. The project was dedic-
ated to the further development of the game. That the game engine was made open source made
it possible to completely overhaul the game, and try out new technologies.

Inspired by various physics sandboxes like Phun or Crayon Physics, the idea to make use of an
open source physics engine for the game came up at one time. However, we quickly had to find
out that it is very difficult to get this to work because the landscape of Clonk is represented as a
two-dimensional array, like a raster graphic. Physics engines however, work only with geomet-
ric shapes like lines, circles, rectangles and polygons. Additionally, as the landscape of Clonk is
basically a raster graphic, it looks all pixelated when zoomed in. Now, there is a very good
reason for Clonk to have this kind of landscape representation: half of the gameplay revolves
around digging through the landscape and mining for resources. It is essential for the gameplay
that the landscape is changeable and specifically, destructible. A pixel-based landscape enables
an easy and fast modification and destruction of the landscape through simple modification of
the single pixels in the array, like in a graphics painting program.

Game landscapes based on polygons had been done before. What hadn't been done before was a
landscape representation based on polygons that was also creatable and changeable like a raster
graphic: paint and erase the polygon-based landscape with a brush tool, not just create and
change the landscape by (re)defining the vertices of the polygons. So the initial motivation to
investigate whether or not an implementation of a changeable landscape based on polygons is
feasible or not came from my involvement in the development of this game.

However, after some tests, it quickly turned out that the implementation of a landscape with
these properties was anything but trivial. Also, I noticed that much work has been done on the
field of polygon clipping (the operation with which polygons are added or subtracted from each
other) and related areas in science already. Since the subject of reliable clipping operations for
continuous use (which is required for games with changeable landscapes) has not been covered
yet, I decided to discuss this subject properly in a thesis.

At this point I want to thank the people who supported me by pointing out mistakes, missing or
ambiguous explanations in the thesis or helping me to debug the implementation and find
errors: Dr. Werner Hansmann, one of my supervisors, my fellow student and flatmate Niels
Beuck, my mother (for trying) and also the people from the OpenClonk project, especially
Armin Burgmeier, Peter Wortmann, Charles Spurril, Günther Brammer, Sven Eberhardt and
Matthias Rottländer.

Except for the screenshots in figures 1-4 which are taken from various games, all figures in this
work are created by myself (in Inkscape).

1 The project's website can be found at http://www.openclonk.org/

http://www.openclonk.org/

 3

Abstract
There are two main approaches for the representation of a landscape in two-dimensional
computer games: Interior-based landscapes and edge-based landscapes. Modern games with an
edge-based landscape enable, amongst other things, the use of advanced physics engines.
However, no game is known to the author that features an edge-based landscape which is at the
same time completely changeable (destructible).

This thesis offers an approach for an implementation of a two-dimensional landscape based on
polygons which is dynamically changeable in real-time. This includes a description of
algorithms that are utilized for typical operations in an edge-based game landscape like collision
detection or containment checks. The main focus of this thesis, however, lies on the proposal of
a polygon-clipping algorithm that is eligible for continuous usage in the game and enables a
polygon-based landscape to be completely changeable. Finally, efficient spacial data structures
are discussed that can be used to store this kind of landscape and make queries on the landscape
perform in reasonable time.

Table of contents
1 Introduction 5

2 Polygon basics 9
2.1 Definition..9
2.2 Size and circumference..10
2.3 Determining convexity..10
2.4 Intersection with a line...11

2.4.1 Optimization: Line intersects a convex polygon..12
2.4.2 Optimization: Intersection with a ray..12

2.5 Point in polygon check..13
2.5.1 Special case: Ray hits vertex or intersects in a line..14
2.5.2 Optimization: Convex polygons..15

3 Clipping operations on polygons 16
3.1 Previous work..16
3.2 General concept...18
3.3 First step: Intersections..19

3.3.1 Special case: Additional intersections are created..20
3.3.2 Optimization: Using a scanbeam...23

3.4 Second step: Labeling..25
3.4.1 Labeling process..26
3.4.2 Determine status of edges at intersections...28
3.4.3 Implementation and data structure...29

3.5 Third step: Connect edges...30
3.5.1 Basic procedure...30
3.5.2 Left hand rule..32

3.6 Dealing with holes in polygons...33
3.6.1 Negative sub-polygons..33
3.6.2 Weakly simple polygons with “pipes”...34
3.6.3 Splitting into simple polygons...35

4 Spatial data structures and algorithms 36
4.1 Bounding box..37
4.2 Splitting up a polygon..37
4.3 Scanbeam algorithm..38
4.4 Grid...39
4.5 Trees..40

4.5.1 Storing point data..40
4.5.2 Storing rectangle data..42

5 Conclusion 45

 References 48

 Affirmation 50

1 Introduction 5

1 Introduction
There are different approaches for how the game area or landscape of computer games that take
place in a two dimensional game world is represented. Subsequently, two basic approaches are
described. Interior-based approaches define a (solid) area on the basis of its interior, while edge-
based approaches define that area only by a border which encloses the area.

The usual approach for the popular genre of platformers (also called jump 'n' runs) and other
side-scrollers2 is to use a tile-based one. Some of the first popular video games that used this
technique were Super Mario Bros. (1985), Commander Keen (1990) and Sonic the Hedgehog
(1991).

The landscape of many modern 2D platformers is still based on tiles, sometimes however only
to reuse graphics and make level design easier. A landscape that is represented in tiles (tile-land-
scape) consists of a two-dimensional array in which each entry references a predefined tile type.
Each tile type defines a graphic and a solid area which is usually a simple geometric shape like
a box or a slope, but is not limited to that. Collision checks between moving objects and the
landscape in these games are simple and fast because normally only the one tile the object is in
needs to be looked at.

Figure illustrates how tiles work.

The left image shows a screenshot from the game. If the landscape is overlayed with a grid and
the characters removed (center image), one can see that the landscape is actually composed of
square tiles of equal size with the same graphics for the same tile type. The right image shows
the solid areas in the tile-based landscape. Some tile types in this game are solid (depicted as
black blocks), others are platforms on which it is possible to jump from below (depicted as thick
lines). For each tile type any number of unique properties such as geometric shape, animations,
damage when touched etc. can be defined but each tile can only have one property – its tile type.

The first computer games that featured fully destructible 2D landscapes were the (usually turn-
based) artillery games in which two or more players would shoot at each other in trajectories.
Popular games in this minor genre included Scorched Earth (1991), the Worms series (1995-
present) plus derivatives and GunBound (2005). Other games not based on the artillery genre
that take advantage of a fully destructible (and changeable) 2D landscape include Lemmings
(1991) and the Clonk series (1994-present). Figure 2 shows two examples for games with pixel-
based landscapes.

2 Side-scroller is the term originally used for video games that are seen from the side and whose
landscape is too extensive to fit on one screen so that the camera needs to follow the gameplay action.
The most popular genre that uses this format is that of platformers but it is also used in other genres
such as beat em' ups or (2D) shooters.

Figure 1: This figure illustrates how tiles work on the basis of a screenshot from Super Mario
Bros. 3.

1 Introduction 6

This kind of game landscape has too been implemented as a two-dimensional array in any of the
mentioned games. Basically, a pixel-landscape is a tile-landscape with a tile size of 1x1 pixels
where the solid pixels do not define any other geometric shape than a box. On the other hand,
the landscape as a whole can have any shape and is not limited to the predefined tile shapes.
Each pixel in that landscape can be changed in the game like in a raster graphic which is the
prime advantage of this representation. Of course, this also means that this approach takes up
much more memory than the standard tile-based approach. For example, a pixel-landscape that
covers a game area of the same size as that of a tile-landscape with tiles that have a size of
20x20 pixels would need to store 400 times more tiles than the tile-landscape.

In this approach, every pixel in the landscape references a certain tile type too, in this context
however it should be called material.

The access to single areas of the landscape for simple collision checks is slower because of the
increased resolution but still reasonably simple as it is also based on a two-dimensional array.

A completely different approach to the representation of the landscape is the edge-based
approach. In this approach, the solid landscape is represented by line segments or polygons.
Simple things like walls and platforms which are essential for platformers can be represented by
lines. More complex shapes that could otherwise only be represented in a pixel-landscape can
be represented as polygons (a polygon-landscape).

Edge-based landscapes only emerged recently and are used mostly in indie3 or open source
games where physics play an all important role in the gameplay. Examples of 2D games with
advanced physics simulations are X-Moto (2005), World of Goo (2008), LittleBigPlanet (2008),
Trine (2009), PixelJunk Shooter (2009) and Limbo (2010).

So, a prime reason for the use of a polygon-landscape is that freely available 2D physics engines
like ODE (2001), Bullet (2003) or Box2D (2007) require the landscape to consist of only edge-
based geometric shapes. Advanced physics simulations turned out to be very popular in games
and nowadays, computers are powerful enough to perform this kind of simulation in real-time.
Generally, collision checks and other simple physics are less trivial to implement and perform in
reasonable time in polygon based landscapes than in tile based landscapes, however, when it
comes down to more advanced physics calculations, the surface and shape of the involved parts
of the landscape must be known. Of course it is possible to use (local) edge detection algorithms
on an interior based landscape but this is where it gets really cumbersome and slow.

As only the border of a solid area is stored, an edge-based approach tends to be more memory

3 Games that are developed in small teams or companies with no financial support by publishers are
commonly referred to as independent games or indie games. They are usually only distributed online.
The games themselves are low budget and focus more on innovation rather than established game
mechanics and graphics.

Figure 2: On the left: A phone port of Worms (2009), on the right: Clonk Rage (2008)

1 Introduction 7

efficient than an interior-based approach. However, its memory usage and performance is not
dependent of its actual size (in pixels) but its number of edges (its detail).

Figure 3 shows two examples for games whole landscape is based on polygons.

Additionally, a tile-based landscape imposes many limitations on the design of a level. This
limit is quickly reached in graphically more elaborate games. That is why many modern so-
called 2.5D platformers, 3D platform games with a two-dimensional game area, use at least4 an
edge-based approach for the solid parts of a landscape while rendering the graphics in 3D.
Examples include Klonoa: Door to Phantomile (1998), Viewtiful Joe (2003), Shadow Complex
(2009) and Donkey Kong Country Returns (2010). See also figure 4.

Currently there is no game known to the author that features a landscape which is both edge-
based to enable the use of advanced physics simulation and is at the same time fully destruct-
ible. This might be the case because the implementation of a destructible (or generally: change-
able) landscape on the basis of polygons is not trivial to implement, but can also be explained
by considering that the development in the sector of 2D computer games did not get quite as
much attention in the past decade by the big game development studios as the sector of 3D
games. With that reasoning, it is no wonder that the recent innovations in 2D gameplay have
been coming from independent games rather than from the big game studios.

However, it should be noted that there are two most probably edge-based games which feature
at least the destruction of parts of the game area: The 2D physics sandbox Algodoo (2009)

4 It is difficult to find out what technique a game uses exactly. One can only guess from looking at how
it works and what would be expedient in their case. In the case of 2.5D games, they could of course
also technically work like a fully fleshed 3D game but limit the controls to a 2D plane.

Figure 4: Left: Donkey Kong Country Returns (2010), right: Klonoa: Door to Phantomile
(1998)

Figure 3: X-Moto (2005) to the left and Limbo (2010) to the right

1 Introduction 8

enables to draw and erase free shapes in the game area. The game PixelJunk Shooter (2009)
features certain destructible regions in the landscape.

So, the main goal of this thesis is to offer an approach how to implement a 2D landscape based
on polygons which is also completely changeable during the course of the game and in real-
time. This also includes a description of the basic operations on polygons like collision detec-
tion (intersection with a line), containment checks etc.

Changeable in this context means to be able to change the region enclosed by the polygons,
similar to what is done in a pixel-based landscape: Replace portions of the landscape with a
different material, remove them or add new portions of a material somewhere in the landscape.
In a landscape based on polygons, these kind of operations are done with clipping operations.
For the implementation of a clipping operation and the landscape consisting of polygons in
general, some special requirements should be met:

First of all, as the operations on the landscape ought to run in real-time, the performance is
important. Checks and clipping operations on the landscape must be bounded in their execution
time, so the same operation should not for example take ten times as long on one side of the
landscape as on the other side of the landscape. Since the field of application is a very specific
one in this case, the operations should be optimized for the typical operations in a game world:
It must be considered that the clipping operations are not just performed once on a set of input
polygons but repeatedly or even continuously throughout the course of the game at many differ-
ent locations in the landscape. Additionally, the data structure must still allow often-used checks
like collision detection to be fast.

Because one must be prepared for continuous changes on the landscape, the clipping algorithm
must be robust: The algorithm must always output polygons that it also accepts as input poly-
gons (which is not given for all implementations). Specifically, the algorithm needs to handle
the limited precision of numbers in computers without outputting invalid polygons at some
point.

Another issue in the context of games is network synchronization. Because over the years,
different floating point representations have been used in different system architectures, its
usage might become a problem when synchronized across computers with different system
architectures.

That is why the implementation should also be able to use only fixed point numbers for calcula-
tions. At the same time, this allows to define an upper limit for the detail of the polygons in
the landscape. This is important because with every clipping operation on the landscape, it tends
to become more and more detailed which conversely makes its access slower. As it is possible to
set an upper limit for the detail of a tile-based landscape by defining the size of a tile in pixels,
the same should be able to be done with a landscape based on polygons.

The rest of this thesis is structured as follows:

In chapter 2, the primitive operations on polygons which are essential for basic operations on a
landscape that consists of polygons will be described in detail. However, the main focus of this
thesis lies on the implementation of how to make changes on a polygon-based landscape,
specifically, how to perform clipping operations on single polygons. This is described in
chapter 3.

Methods and data structures to make operations on the whole landscape rather than single poly-
gons perform in reasonable time are roughly described chapter 4. However, detailed descrip-
tions about the implementation of this would go beyond the scope of this work.

Finally, a conclusion is drawn in chapter 5 in which the pixel-based landscape is compared with
the solution presented in this work.

2 Polygon basics 9

2 Polygon basics

2.1 Definition

A polygon is typically defined as a sequence of
vertices which are connected by straight line segments,
the edges of the polygon. All edges taken together form
the boundary of a polygon. The faces of a polygon are
defined by the areas which are enclosed by the bound-
ary.

Figure 5 shows an example of a simple polygon.
Simple polygons are polygons which are not self-inter-
secting. That is, polygons whose boundary does not
intersect. Simple polygons have a clearly defined
inside and outside because their boundary only defines
one face.

A simple polygon can be either convex or concave. If
the internal angle between each two successive line
segments of a polygon is less or equal than 180 degrees
(is a convex angle), it is a convex polygon. Otherwise it
is a concave polygon.

Simple polygons whose edges may intersect but not cross each other can be called self-touching
or weakly simple polygons.5 Figure 6 depicts the difference between a non-simple and a weakly
simple polygon. In all other respects, weakly simple polygons share the same properties as
simple polygons.

The algorithms presented in this work are able deal with arbitrary simple polygons (not weakly
simple polygons). For convenience, simple polygons will just be called polygons here.

5 There are a couple of different definitions for “weakly simple polygons” in literature. That is because
the term is often used to describe a type of polygon that is almost but not quite a “simple polygon”. In
this work, the definition provided by D. W. Krumme et al. [K2] is used.

Figure 5: An example of a simple
polygon

Figure 6: Both depicted polygons show self-intersections but only the edges
of the left polygon cross each other. The right polygon is a weakly simple or
self-touching polygon.

2.2 Size and circumference 10

2.2 Size and circumference

The area of a polygon is calculated by the Gaussian trapezoid formula:

2A = ∣∑i=0

n−1

(y i+ y(i+1) mod n)⋅(x i− x(i+1) mod n)∣
A is the area of the polygon. (xi, yi) are the coordinates of the vertex at index i. The first vertex is
(x0, y0). If the sum in above formula is not reduced to an absolute value, the result of this
formula will be positive if the polygon is defined counter-clockwise and negative if the polygon
is defined clockwise. So, the Gaussian trapezoid formula is an easy way to find out in which
direction the polygon is defined as well.

The circumference is calculated by adding the distance between all successive vertices of the
polygon.

2.3 Determining convexity

All interior angles of a convex polygon are less or equal 180°. So, given that the polygon is
defined counter-clockwise, each vertex vi of the polygon has to be left of the previous line
spanned by vi-2 and vi-1. If any of the vertices do not fulfill this condition, the algorithm can
terminate and return false.

This check runs in O(n). n is the number of edges of the polygon. The pseudo-code in Figure 7
returns true if the polygon is convex.

for each vertex Vi in the polygon
 if Vi is right of the line spanned by Vi-2 and Vi-1

 return false
 endif
endfor
return true

Figure 7: Pseudo-code to determine convexity

2.4 Intersection with a line 11

2.4 Intersection with a line

The intersection of a line and a polygon is a set of points and lines. The set may be empty (there
is no intersection) or contain any number of points and lines.

As depicted in Figure 8, the intersection with the boundary and the intersection with the face
must be distinguished since it is something completely different: the points where the line
crosses the polygon boundary mark the start- end endpoints of the intersections with the poly-
gon face. For most operations, only the intersections of the boundary are of any interest; the
intersection with the polygon face can be calculated from the polygon boundary intersection.

In the application of polygon-based landscapes, intersections with lines are performed for colli -
sion checks with objects. The line then stands for the path a moving object covered in a single
time step. If this line intersects with a polygon, the objet collides with it at the intersection point.

The polygon boundary consists of a number of line segments. Every single one of those line
segments needs to be checked for an intersection with the given line in order to determine all
intersections. To avoid that the same two intersections are found twice, the line segments need
to be treated as open to one end (that is, one end point is not included in it).

For a single polygon, this check runs in linear time O(n) while n is the number of edges of the
polygon and thus intersection checks. See Figure 9 for the pseudo-code.

for each edge in the polygon
 if edge and line intersect
 if intersection is not at start-point of edge
 memorize intersection
 endif
 endif
endfor
return memorized intersections

Figure 9: Pseudo-code for the intersection check for any polygon

Figure 8: The difference between intersections of a line with the boundary of a
polygon and the face of a polygon

2.4.1 Optimization: Line intersects a convex polygon 12

2.4.1 Optimization: Line intersects a convex polygon
The procedure is the same for all polygons. However,
it is known that any line drawn through a convex poly-
gon can only share two intersections with the boundary
of that polygon: one intersection where the line enters
the polygon face and one where the line exits the poly-
gon face.

If the line does not cross the boundary of the polygon
but only touches it, there is only one intersection. Note
that if the intersection of the line and the polygon is a
line itself, several successive line intersections might
be found by the algorithm. These however all lie on
the same line. See Figure 10 for an illustration.

So if the polygon is a convex polygon, the algorithm
can already terminate after either two point intersec-
tions or one set of successive line intersections have
been found. This saves about fifty percent of all inter-
section checks that need to be made for lines that actu-
ally intersect with the polygon.

2.4.2 Optimization: Intersection with a ray
In many applications such as collision detection, only the first intersection of a ray and a poly-
gon is of any interest. If it is known whether the starting point of the ray is inside or outside the
polygon, the number of edges to be checked for an intersection with the ray can be reduced to
about the half:

Back-face culling is a technique used in 3D computer graphics which excludes all polygons
from the rendering process whose faces do not face towards the camera. This is done by a
simple comparison between the viewing direction vector V of the camera and the normal vector
N of the face:

V⋅N>0

If the scalar product of V and N is greater than zero, the counter-clockwise defined polygon
faces away from the camera and thus will not be rendered (For polygons that are defined clock-
wise, when the scalar product is smaller than zero). The same technique can be used in this
application: if the starting point of the ray is known to be outside the polygon, the back-facing
edges can be left out of the intersection checks. However, if the starting point is inside the poly-
gon, the front-facing edges can be left out.

Figure Error: Reference source not found
shows an example of this technique:

The intersection between the ray and the
edge e1 is not checked because the scalar
product of n1 and r is greater than zero,
which means the edge is back-facing. All
green edges in the image are back-facing and
thus are not checked for intersections with
the ray.

Figure 10: The line l1 intersects the
convex polygon p1 in two lines i1

and i2. Both lie on the same line.

Figure 11: Example of the back-face culling
technique: r is the direction vector of the
ray. n0 And n1 are the right-hand normal
vectors of the edges e0 and e1 .

2.4.2 Optimization: Intersection with a ray 13

When using the back-face culling technique on convex polygons, the algorithm can already
terminate when one intersection point has been found because the other intersection with the ray
would be found on a back-facing edge.

It should be noted that to determine whether the starting point of the ray is inside or outside of
the polygon is about as expensive as the line and polygon intersection check itself. That is why
it is not expedient to do the point in polygon test here just to be able to discard about half of the
intersection checks by using back-face culling. See the next section for details on the point in
polygon check.

The function in pseudo code shown in Figure 12 returns true if the given edge may be culled:

2.5 Point in polygon check

For polygon-based landscapes, point-in-polygon checks are used for a couple of things. This
includes checking whether an object is stuck in a solid polygon or finding out what material can
be found at a certain location.

There are two common methods to test whether a point lies inside or outside of a simple poly-
gon. Both the winding-number algorithm and the ray-casting algorithm were already roughly
described as early as 1974 by Sutherland et al. [S1]. Only the ray-casting algorithm and its
special cases will now be described in detail.

In this algorithm, a ray is shot from the point into an
arbitrary direction. Whether the point lies inside or
outside of the polygon is determined by how many times
the ray crosses the boundary of the polygon. If the
number of crossings is odd, the point lies inside of the
polygon. If it is even, the point lies outside. The method
is similar to the intersection check with lines, but here
only the number of crossings is of interest, not the inter-
sections themselves.

The ray can be shot in any direction. However, it is
easier to compute intersections with lines that are paral-
lel to one of the axes.

Figure 13: Point p is inside the
polygon, q is outside and r is on
the border

culling_check(edge,ray):
 scalar = direction vector of the edge * right-hand normal vector of the ray
 if starting point of the ray is outside the polygon
 if scalar > 0
 return true
 endif
 else
 if scalar < 0
 return true
 endif
 endif
 return false
end

Figure 12: Pseudo-code for a back-/front-face culling check

2.5 Point in polygon check 14

Three cases should be distinguished (see figure 13):

(a) The number of crossings is odd which means the point is inside the polygon.

(b) The number of crossings is even. The point is outside the polygon.

(c) The intersection of the ray and a polygon edge is the point itself. The point is on the
border of the polygon

The border of the polygon is defined as still inside the polygon so case three is not required
because it is covered by case one. However, in case three the algorithm can terminate without
any further (intersection) checks.

See Figure 14 for the pseudo-code.

2.5.1 Special case: Ray hits vertex or intersects in a line
In this algorithm, a clear distinction has to be made between cross and intersect. Only if the ray
crosses the boundary of the polygon, the intersection may be counted:

Only in the special case that the ray intersects with a vertex of the polygon or the intersection
consists of a line, it may happen that the ray does not cross the boundary. Otherwise, an inter -
section is always a crossing.

Figure 15 depicts the possible cases:

The ray of point a0 intersects with a vertex of the poly-
gon but does not cross its boundary. The intersection is
disregarded. The same can be observed for a1. However,
a1 is correctly identified as inside the polygon because
the second intersection is a crossing.

Like a0, the ray of point b intersects with a vertex. But
here, it crosses the polygon boundary.

The first intersection of the ray of point c is a line
segment. Because the ray enters into the polygon face
and thus crosses the boundary at the end of the intersec-
tion line, the intersection counts as a crossing.

for each edge in the polygon
 if edge and ray intersect
 if intersection is at start-point of edge
 continue with next edge
 endif
 if the intersection point is the starting point of the ray
 return true
 endif
 if the intersection is a line or at a polygon vertex
 if crosses_boundary(ray,intersection)
 increment crossingCount
 endif
 else
 increment crossingCount
 endif
 endif
endfor
return true if crossingCount is odd, otherwise false

Figure 14: pseudo-code for the ray-casting algorithm

Figure 15: Intersections with the
vertices of a polygon

2.5.1 Special case: Ray hits vertex or intersects in a line 15

To determine whether a line crosses a boundary in one intersection or not, the following easy
check has to be made:

A line splits a plane into two sides. If both the vertex of the polygon before and the vertex after
the intersection lie on the same side of the line, the line does not cross the boundary. Otherwise,
it crosses the boundary.

Note that this line intersection doesn't need to consist of only one line. There could be several
successive line intersections before the ray actually crosses or leaves the boundary of the poly-
gon. Generally, successive line intersections which lie on the same line should be treated as one
intersection in this case. Figure 16 shows the pseudo-code for this check.

2.5.2 Optimization: Convex polygons
The point-in-polygon check for convex polygons is much easier and faster: if the vertices of a
convex polygon are defined in a counter-clockwise order, the point must be on the left side of all
polygon edges to be inside the polygon. If the point is on the right side of any edge, the
algorithm can terminate and it is outside of the polygon.

crosses_boundary(ray,intersection):
 A = previous vertex of the polygon which is not part of the intersection
 B = next vertex of the polygon which is not part of the intersection
 if A is left of the ray and B is right of the ray
 return true
 endif
 if B is left of the ray and A is right of the ray
 return true
 endif
 return false
end

Figure 16: pseudo-code for the ray-casting algorithm

3 Clipping operations on polygons 16

3 Clipping operations on polygons
Clipping operations (also called Boolean operations) are binary operations on two polygons.
These include union, difference, intersection and exclusion. The polygon on which the operation
is performed is the subject polygon, the other is the clip polygon. See figure 17.

In this context, clipping operations are used to change the landscape. If for example a round
hole should be blasted into a specific spot in the landscape, a polygon in the shape of that hole is
subtracted from the landscape at that spot. If a chunk of another material is inserted into the
landscape, first the polygon which represents this chunk is subtracted from the landscape (to
make a hole for itself to fit in) and then inserted into it.

3.1 Previous work

The clipping of polygons has been a basic problem in areas such as 3D computer graphics and
computational geometry. Early algorithms were tailored to clip polygon faces with rectangular
areas like the viewport boundaries or single lines. The clipping of polygons with the display
area in computer graphics is a standard and fundamental task that is carried out in any applica-
tion that uses 3D graphics. The wide range of applications of 3D graphics explains the large
amount of scientific papers that deal with this problem [L1, S2, F1, R1].

Later, various algorithms were developed that clip arbitrary planar polygons like concave poly-
gons, polygons with holes or non-simple polygons. The basic procedure of polygon clipping is
similar for most of these algorithms:

First, the intersections of all edges of the two polygons are calculated and subdivided at the
intersection points. Then, it is determined which edges are inside or outside the other polygon
and the resulting polygon is constructed accordingly. Some algorithms do this in separate steps
while others already construct the resulting polygons in the same loop as the intersections are
calculated.

Algorithms based on a mathematical model of simplicial chains (simplex theory) were
developed by Rivero and Feito [R2] and enhanced by Peng et al. [P1]. They accept simple poly-
gons without or with any number of holes.

Algorithms based on a scanbeam (also: sweep-line) were presented by Sechrest and Greenberg
[S3], later by Vatti who developed an algorithm that worked for arbitrary polygons that may
self-intersect [V1]. The algorithm of Martínez et al. [M1] is also based on the scanbeam
paradigm but is faster than Vatti's, especially for polygons with a lot of edges. The scanbeam is
used to find the intersections between the two polygons more efficiently. A more thorough
description of this method is given in section 3.3.2 (Optimization: Using a scanbeam) as this
method is compatible with the algorithm presented in this thesis and other edge labeling

Figure 17: The four clipping operations for the subject polygon A and clip polygon B.

3.1 Previous work 17

approaches. The algorithms based solely on a scanbeam derive the data needed to construct and
return the resulting polygons directly during that operation.

An Edge labeling approach has been introduced by Greiner and Hormann [G1], Schutte [S4]
and Desmera [D1] independently.6 In this approach, the algorithm is split up into three steps.
After the intersections between the two polygons have been found and inserted into both poly-
gons as vertices, the edges of both polygons are labeled according to their orientation with
respect to the other polygon. In the third step, the resulting polygons are constructed on the
basis of this data. So, the part of finding the intersections between the two polygons is separated
from the logic of putting together the resulting polygons.

Subsequently, these algorithms will be analyzed in more detail because the algorithm for poly-
gon clipping presented in this thesis is also based on the edge labeling approach:

Greiner and Hormann's algorithm can handle self-intersecting polygons because it included a
clear definition of which points are inside and which are outside the polygon. Their general
concept of the labeling process is the following: The algorithm starts by determining if one
vertex of the subject polygon is inside or outside the clip polygon. The following edges are
labeled the same as their respective predecessors until an edge of the other polygon is crossed.
Whenever this happens, the labeling of the following edges is switched: if the previous edges
were labeled as outside, the next edges are labeled as inside and the other way round. When the
starting vertex is reached, the labeling is complete. The same is done with the clip polygon.

However, this method assumes that no vertex of one polygon lies exactly on the boundary of the
other polygon. This can hardly be assumed for the general case of arbitrary polygons. The solu-
tion Greiner and Hormann offered for this is to displace the affected vertex by a tiny distance to
circumvent this special case. It is explained that if the chosen distance is smaller than one pixel
on the screen, the difference will be too small for the eye to see. But this solution is not satis -
factory because it can't be assumed that there is no case where the displacement of one vertex
does not lead either to the same situation with another edge, or a new intersection of the
surrounding edges with edges of the other polygon. The problem becomes more obvious when
working with integers instead of floating point numbers.

Furthermore, Greiner and Hormann's algorithm doesn't account for possible holes in resulting
polygons, nor the possibility that the edges of the subject and clip polygon may intersect in
lines.

The edge labeling part of Schutte's algorithm is similar to the one presented in this work.
However, only the operations union and difference are described in their paper. Their algorithm
only handles simple polygons but can be extended to accept self-intersecting polygons and poly-
gons with holes as input. Polygons with holes are first split up into several polygons by subtract-
ing the hole from the polygon. For self-intersecting polygons a similar technique is used.

6 It is to say that Greiner and Hormann didn't use the term edge labeling in their paper but ultimately
their approach is an edge labeling approach according to the explanation in the text.

3.2 General concept 18

3.2 General concept

Subsequently, another algorithm based on the edge labeling approach will be described. It is
able to handle all simple polygons and covers all four clipping operations: union, difference,
exclusion and intersection.

To match the requirements for an implementation mentioned in the introduction, the algorithm
is able to completely work in integer space. This both makes it possible to define an upper limit
for the detail of the polygons as well as makes network synchronization easier. However, in
integer space some special cases become more obvious and must be covered for mathematical
robustness.
The algorithm only outputs polygons it itself accepts as input polygons because the algorithm is
supposed to work repeatedly on the same set of polygons.

Roughly, the algorithm can be split up into 3 main steps:

1. Find and insert all intersections into both polygons. As a result of this step, all edges
intersect only at their endpoints. Thus, all edges are now clearly situated either inside or
outside of the other polygon.

2. Label each of the polygon edges of both polygons as either inside (inside the other poly-
gon), outside (outside the other polygon), shared or reverse-shared. Shared means that
both polygons share this edge. Reverse-shared edges are shared edges with opposite
orientation.

3. Connect the edges according to their labels and the designated clipping operation. For
difference (see figure 18): connect all outside and reverse-shared edges of the subject
polygon with all inside edges of the clip polygon. For union, connect all outside and
shared edges of the subject polygon with all outside edges of the clip polygon.

Figure 18: The three steps of the clipping operation “difference”

3.3 First step: Intersections 19

3.3 First step: Intersections

In the first step, all intersections are found by checking each edge of the subject polygon and
each of the clip polygon for intersections. The calculated intersections are then inserted as extra
vertices in both polygons (if they are not already in the polygon at this position) and memorized
for the next step as shown in Figure 19. Because new vertices can be inserted at random posi-
tions in the polygon, the sequence of vertices should be available as a linked list rather than an
array list (vector) during the clipping operation. The complexity to insert a new vertex at a given
iterator is O(1) for linked lists as opposed to O(n) for array lists. More importantly, iterators to
array lists are invalidated when a new element is inserted. As the intersections need to be
memorized for the second and third step of the algorithm, an array list is not eligible for this
algorithm.

The result of this step is that no two edges of the polygons may intersect at any other point than
at its vertices. In other words: each edge of both polygons must be clearly classifiable as either
outside, inside, or on the boundary of the other polygon. That is why the intersection points are
inserted in both polygons.

For line intersections, both the start and end points have to be inserted into the polygons. The
order in which the points are inserted is of importance here to not mess up the shape of the poly-
gon: if the intersection line goes into the same direction as intersecting polygon edge, the start
point is inserted before the end point. Otherwise, if the line goes into the opposite direction, the
end point is inserted before the start point. The scalar product of two vectors that go into the
same direction is always positive. So, all that needs to be done to check this is to multiply the
direction vector of the intersection line and the edge. The pseudo code can be seen in Figure 20.

for each edge Ai of subject polygon A
 for each edge Bi of clip polygon B
 if Ai and Bi intersect
 insert(intersection,Ai)
 insert(intersection,Bi)
 memorize all vertices in intersection and its positions in A and B
 endif
 endfor
endfor

Figure 19: First step of the polygon clipping algorithm

insert(intersection, edge):

 if intersection is a point
 if point is neither start nor end point of the edge
 insert point into polygon at edge
 check for new intersections and self-intersections at neighboring edges
 endif
 elseif intersection is a line with start point P and end point Q
 if line direction vector * direction vector of edge ≥ 0
 insert(P,edge)
 insert(Q,edge)
 else
 insert(Q,edge)
 insert(P,edge)
 endif
 endif

end

Figure 20: Insert an intersection into an edge

3.3 First step: Intersections 20

In case no intersections have been found in this step, the polygons are either not intersecting at
all or one polygon completely encloses the other (all points of polygon A is in polygon B or the
other way round).

If the second applies, all edges of the smaller polygon can be labeled as inside and all edges of
the bigger polygon as outside. The second step of this algorithm can be skipped in this case.

The time complexity for this step is O(n²). This is the most expensive operation in this
algorithm. In section 3.3.2, it is explained how to exclude most edges from the intersection
check using scanbeams in order to make this step more efficient. Other than that, there is no
way to reduce this complexity without using spatial data structures which make the exclusion of
edges that do not intersect faster. A solution with a geometric data structure is presented in
chapter 4 (Spatial data structures and algorithms).

3.3.1 Special case: Additional intersections are created
The shape of the polygon is theoretically not altered by the insertion of the intersections since
these points are already part of the boundary. In reality, numbers in computers have limited
precision. Thus, any insertion of a new vertex in a polygon may alter its shape.

A minimal displacement of the intersection points due to rounding imprecision leads to a
slightly different shape of the polygon. This means, that at the edges around the newly inserted
vertex, there might occur new intersections between the two polygons.

The data displayed in figure 21a and 21b is taken from an actual test of the implementation.

Note that this special case can happen always when the intersection is not exactly located at one
point.

Unfortunately, to be sure that all intersections are found, the four neighboring edges of the inser-
ted point (of both polygons) must each be checked for new intersections with the other polygon.
If there are new intersections, these have to be inserted and checked for new intersections, too.

This issue is the prime reason why the finding of the intersections need to be separated from the
labeling and constructing of the resulting polygons.

Figure 21a: ab intersects with pq at a
point close to b. The intersection point must
be inserted in both polygons between p,q
and a,b.

Figure 21b: The intersection point is
inserted. The shape of both polygons change
slightly and now the newly created edge x⃗q
intersects with an edge of the other polygon.

3.3.1 Special case: Additional intersections are created 21

Additionally, it must be noted that through the insertion of new vertices, the shape of the poly-
gons can be altered in a way that (one of) the polygons do not meet the constraints to fall into
the category of simple polygons anymore. The data displayed in figure 22a and 22b is also taken
from actual test data. After the intersection points have been inserted into both polygons, one
edge of the extremely narrow section of polygon A slipped down past its own boundary which
means that polygon A self-intersects, it has a section which is defined clockwise.

It is not possible to prevent a polygon from deforming into a non-simple polygon at this point,
but it is possible to detect if self-intersections occurred and split the original polygon up at these
points. These have to be clipped separately in the rest of the clipping algorithm. In the above
example, polygon A must be split up into two polygons at position (8,4).

The self-intersections are found the same way as the intersections between two polygons are
found. Also, the same rules apply: the intersection points need to be inserted in the polygon if
they do not exist yet and memorized thereafter in order to easily split them up after the first step
of the clipping algorithm completed. If new points are inserted, again all neighboring edges
need to be checked for new intersections.

See figure 23 for the pseudo-code to split up the polygon at its self-intersections.

So, the actual (worst-case) cost of the first step of the clipping algorithm adds up to n²+8⋅c⋅n
intersection checks with n being the number of edges of the polygons and c the number of inter-
sections between the two. The factor is 8 because for each inserted intersection point that alters
the shape of the polygons, all 4 neighboring edges need to be checked for new intersections as
well as each the 2 neighboring edges of both polygons for self-intersections.

Figure 22a: Two polygons are
clipped. This figure shows the
two original polygons, the
arrow shows the orientation of
the edges in polygon A.

Figure 22b: The two polygons
from figure 22a after the
intersections have been added to
both polygons. The encircled
vertices are the newly inserted
vertices, the arrows show the
orientation of the edges in
polygon A.

3.3.1 Special case: Additional intersections are created 22

At the time of this writing, it is unknown whether there is a method that somehow circumvents
this problem as this issue has not even been mentioned in past works. A reason for this might be
that past works were based on floating point numbers. So when an intersection had been missed,
the resulting error in the output usually happened at some place after the decimal point and thus
was usually not visible (on the screen). Another reason might be that past clipping algorithms
were not tested to work with polygons that were defined at the highest precision available, e.g. a
narrow and long polygon with a width of exactly one unit or even less (as shown in figure 22).

With random test data, the insertion of new vertices and the resulting change of the polygon's
shape rarely leads to new intersections to occur between the two polygons. However, it happens
quite often if the boundaries of the polygons are represented near the maximum level of detail
available. Because in each clipping operation, the intersections are inserted in both polygons as
new vertices, the polygons tend to become more and more detailed with every clipping opera-
tion performed on them. As polygons can be clipped continuously in a game with a changeable
landscape, it must be assumed that many polygons might be represented near the maximum
level of detail available.

This does not change the fact that through such errors introduced in this step, a polygon can
result that is not a simple polygon anymore or the algorithm fails completely due to erroneous
intermediate results.

It is not trivial to keep track of the intersections that have to be memorized in this case because
when the shape of the polygon is changed, not only new intersections can arise, others might
also be transformed into line intersections or previously found intersections are found again.
Because of this, memorized vertices that are part of an intersection should be stored in a data
structure that stores only unique values like a set or a map.

separate(polygon P):

 Start = any vertex of the self-intersections
 L = list of separated polygons
 S = stack of start vertices
 S.push(Start)

 while Start is not reached again, walk along the boundary of P
 if another self-intersection I is found

 Begin = the vertex at the top of stack S
 Current = the current vertex

 if I is at the same point as P
 add the vertices from Begin to Current as a new polygon to L
 S.pop
 if S is empty now
 Start = Current
 S.push(Start)
 endif
 else
 S.push(Current)
 endif

 endif
 endwhile

 return L
end

Figure 23: Split up the polygon into several polygons at the point(s) at which it self-intersects

3.3.2 Optimization: Using a scanbeam 23

3.3.2 Optimization: Using a scanbeam
With this algorithm, the intersection checks are only made between edges that are in an active
stripe: the scanbeam. The scanbeam can either be vertical or horizontal and moves from one
side of the polygon to the other; for example from the top (the topmost vertex of the polygons)
to the bottom (the bottommost vertex of the polygons). During the process, a list of active edges
for each polygon is kept. Intersection checks are only made against edges in this list which
limits the number of necessary intersection checks substantially. For a horizontal scanbeam that
goes from the top to the bottom, the algorithm can be roughly described like this:

Before the algorithm starts, all vertices of both polygons must be sorted by their vertical posi-
tion. After that, each vertex of both polygons is processed in the order they appear in the sorted
list: If the current vertex is the upper endpoint of an edge, that edge is put into the list of active
edges. On insertion, it is checked whether the newly inserted edge intersects with any edges of
the other polygon already in the list. If it does, the intersection point is calculated and inserted
into both polygons. The sorted list of vertices needs to be updated to include the newly inserted
vertices. Since the two active edges that intersected do not exist in the two polygons anymore,
they need to be altered to have their lower endpoint on the newly inserted vertex. If the current
vertex is the lower endpoint of an edge, that edge is removed from the list of active edges.

Since vertices in polygons are adjacent to two other vertices, vertices can be the upper endpoint
of one edge and the lower endpoint of another, the upper endpoint of two edges (like the
topmost vertex) or the lower endpoint of two edges (like the bottommost vertex).

To efficiently implement this, the vertices of the polygons and the active edges need to be able
to link to each other so that it is easy to identify the associated active edges of one vertex.

Figure 24 shows the generic scanbeam algorithm in action with two example polygons. As illus-
trated by the example, the algorithm can make the intersection check between the two polygons
much faster because some edges do not even have to be checked for any intersections; others
only check against a few edges of the other polygon. However, this optional optimization
requires some additional implementation effort as well as a change to the data structure of the
polygons. Also, the special case described in section 3.3.1 has to be accounted for in the scan-
beam algorithm, too.

For the average case, the time complexity of a polygon intersection using this technique is the
time complexity of the sort operation before using the scanbeam algorithm. To sort a list with
quicksort has an average time complexity of O(n log n), with n being the number of vertices.

3.3.2 Optimization: Using a scanbeam 24

The bold lines in the figure 24 mark the active edges. The numbers at the vertices show their
order in the list sorted by their vertical position. The first vertex in this list will be called p1, the
second p2 and so forth.

(a) Before the algorithm can begin, all vertices of both polygons must be sorted by their
vertical position in a list.

(b) The algorithm starts at the first vertex. Its associated edges are added to a list of active
edges. Since there are no active edges of the other polygon, no intersection check is
made.

(c) The algorithm continues with the second vertex which is the lower endpoint of the edge
p1 p2 . The edge is removed from the list of active edges. The second vertex is also the

upper endpoint of p2 p9 which is then added to the list of active edges.

(d) The third vertex is reached. It is the upper endpoint of two edges, both are added to the
list of active edges one after another. Both added edges are checked with all active
edges of the other polygon for intersections. p3 p4 intersects with p1 p5 .

(e) The vertices at the intersection point are inserted normally into both polygons and then
inserted into the sorted list of vertices at the adequate position. After that, the old edges
are altered to have the newly inserted vertex as their endpoint. The vertices at the fourth
point are reached. The just altered edges are removed and the other associated edges are
added as active edges and each checked for intersections with the other polygon.

(f) The fifth vertex is reached. It is the lower endpoint of p4 p5 and the upper endpoint of
p5 p13 . p4 p5 is removed and p5 p13 is added as an active vertex. The algorithm

continues with the sixth vertex...

Figure 24: The first few steps of the scanbeam algorithm

3.4 Second step: Labeling 25

3.4 Second step: Labeling

There are four possibilities how a polygon
edge can be positioned with respect to the
other polygon: it can be an inside, an
outside, a reverse-shared or a shared edge.
All possibilities are depicted in Figure 25.

Shared and reverse-shared polygons are
special cases which normally appear very
rarely with arbitrary polygons when two
polygon edges intersect in a line.

Schutte [S4, p.4] mentioned that the obvious
(naive) method to determine how each edge
is located is to check whether the midpoint
of the edge is inside or outside the other
polygon.

However, as previous works already pointed out, one point-in-polygon check for concave poly-
gons results in n intersection checks (n is the number of edges) with the ray-casting algorithm.
Thus, labeling all edges of both polygons would require 2n² intersection checks.

Apart from the performance issue, the method returns incorrect results if any edge is too short:
while it is possible to find a midpoint that is located between any two points in ℝ2 in mathem-
atics, the numbers in computers have a limited precision. This is particularly obvious when
using integers. In integer space, it is impossible to get the midpoint of a line with the length of
one unit:

Figure 26a and 26b show an example for these erroneous results with two polygons in integer
space. The same problem exists of course for floating point numbers but only after the decimal
point.

The edge at (4,2),(3,3) of polygon B should be labeled as outside as well as the neighboring
edges of polygon A marked in bold. However, in the example the edges are labeled as inside the
other polygon. This is because when the midpoint of this edge is calculated, the result is roun-
ded and then happens to be one of its endpoints. Both endpoints touch polygon A, thus are iden-
tified as inside polygon A by the point-in-polygon algorithm. This is correct for the endpoints
but not for the midpoint.

In some cases this can lead to an invalid output (the resulting edges do not form a closed poly-
gon), in other cases the output is just erroneous.

The errors produced by incorrect labeling are usually not much bigger than the rounding impre-
cision itself as shown in figure 26b. However, it can't be excluded that this error results in a
completely scrambled output: for example, if the erroneous section was the entry point to a
larger gap in the polygon.

Figure 25: Two labeled polygons

3.4 Second step: Labeling 26

As Schutte pointed out himself, for these reasons, the point-in-polygon check is rather unfit to
label the edges of the polygons.The algorithm that is presented in the following section works
without any point-in-polygon checks. Like Schutte's algorithm it works in integer space, but is
marginally simpler than his solution and works with arbitrary simple polygons. It can be under-
stood as a combination of Greiner and Hormann's chalk cart metaphor [G1, p. 4] and a simpli-
fied version of Schutte's label_angle algorithm [S4, p. 5] which determines if the edges at an
intersection cross or just touch each other at the intersection point. The time complexity is O(n).
n is the number of edges of both polygons.

3.4.1 Labeling process
The labeling process is started at one intersection point p of polygon A and B. For its successive
edge eA it is determined whether it is inside or outside the other polygon and labeled accord-
ingly. After this has been done, the following edges of polygon A are labeled the same as eA until
the next intersection q is reached.

For q and its following intersection points, the process is repeated until the first intersection p is
reached again. All edges of A are labeled at this point; figure 27 demonstrates this process. The
same is done for polygon B.

While it suggests itself to just switch the labeling around after each intersection point (label the
successive edges as outside if the ones before were labeled as inside and the other way round)
like it has been described in Greiner and Hormann's approach, this will produce incorrect results
whenever the edges of the two polygons do not cross but only touch each other at the intersec -
tion. This is why a new check is required at every intersection.

Also note that this method assumes that the positions at which the two polygons intersect are
known. Because of this, the positions have to be memorized in step one.

Figure 26a: Erroneous labeling of two
polygons in integer space. The labels
around the hole between polygon A and B
are wrong.

Figure 26b: The difference of B and A using
the erroneous labels. The red section to the
bottom is the part which shouldn't be part of
the polygon.

3.4.1 Labeling process 27

(1) The process starts at a random intersection p. First of all, the orientation of the success-
ive edge of polygon A is determined and labeled accordingly.

(2) Then, all successive edges of polygon A are labeled the same until the next intersection
q is reached.

(3) The process begins anew: the successive edge of q is labeled according to its orientation
and the successive edges are labeled the same (which are none in this case) until a next
intersection r is reached.

(4) The same is done for intersection r. The labeling is done when the first intersection p
has been reached again.

Figure 27: The labeling process for polygon A

3.4.2 Determine status of edges at intersections 28

3.4.2 Determine status of edges at intersections
To determine the status (inside or outside the other polygon) of an edge at an intersection point,
it simply has to be checked on which side of the other polygon's edge it is located.

After the first step, it is guaranteed that the edges of the two polygons can intersect each other
only at its start- or endpoints. The edges can be clearly labeled as inside, outside or on the
border of the other polygon. This also means that whether an edge adjacent to an intersection is
inside or outside the other polygon is only dependent on the two edges of the other polygon that
are also adjacent to the same point. Since the polygons are defined counter-clockwise, the left
side of these two edges is defined as inside the polygon while the other side is outside of the
polygon.

Figure 28a illustrates this. It also illustrates that the convex and the concave case must be distin-
guished. For b0 or b1 (and thus eb0 and eb1) to be inside the polygon A, it must be either on the
left side of ea0 or on the left side of ea1 because those two edges are concave. If the two edges are
convex, like in polygon B, the point for which its containment in that polygon is checked, must
be on the left side of eb0 and eb1.

The check on which side of a line a point px is situated is trivial: if the scalar product of the
line's normal vector and the vector (px minus the line's start point) is positive, px is located on the
right side of the line. If it is negative, it is on the left side and if it is zero, it is on the line.

Line intersections are not treated any different than point intersections: For determining how ea0

is situated, only the adjacent edges are being looked at, namely eb1 and e. See Figure 28b for
reference. This is why it is enough to memorize only the vertices that are part of intersections in
the first step of the algorithm, not the (line) intersections themselves. The two endpoints of the
intersection line e in figure 28b were memorized separately.

To for example find out if the edge ea1 of figure 28a is on the border of polygon B, as it is the
case for line intersections, the following simple check can be made: If a1 is on the same spot as
the first point of eb0, then the edge is reverse-shared. If a1 is on the same spot as the second point
of eb1, it is a shared edge.

Figure 28a: The left side of the edges around
the intersection point p is inside their
polygon. The arrows on the lines show the
orientation of the edges.

Figure 28b: A line intersection

3.4.3 Implementation and data structure 29

3.4.3 Implementation and data structure
In step one, it was mentioned that the intersections need to be memorized for step two. They
should be memorized in a way that it is fast and easy to:

(1) access the edges and points around each intersection point / line

(2) access the corresponding intersection of the other polygon

(3) access the next intersection in one polygon

The simple data structure poly_vertex_link can be used to meet these requirements. It links to
two vertices of the subject and clip polygon that are at the same spot (see figure 29). Because of
the special case described in section 3.3.1, the poly_vertex_links should be kept in a set or map.
Additionally, each vertex which is part of an intersection with the other polygon links back to
the corresponding poly_vertex_link.

Figure 30 shows the algorithm for the second step in pseudo-code. Figure 31 shows the method
for determining the status at an intersection.

label(polygon A, polygon B, set of poly_vertex_links Links):
 for each poly_vertex_link I in Links
 edge_label = successive_edge_status(I,A,B)
 for each edge e of polygon A between I and I+1
 label e like edge_label
 endfor
 endfor
end

Figure 30: Labeling process for the polygon A. The process is the same for the other polygon.

successive_edge_status(poly_vertex_link I, polygon A, polygon B):
 e = edge after I in A
 a = first vertex of e (= point of intersection)
 b = second vertex of e

 e1 = edge before I in B
 e2 = edge after I in B

 label = “outside”

 if a == first vertex of e1
 label = “reverse-shared”
 else if a == second vertex of e2
 label = “shared”
 else if e1 and e2 are concave
 if b is left of e1 or e2
 label = “inside”
 endif
 else
 if b is left of e1 and e2
 label = “inside”
 endif
 endif

 return label
end

Figure 31: Function for determining the status of the successive edge at an intersection

struct poly_vertex_link:
 iterator to the vertex at the intersection point in polygon A
 iterator to the vertex at the intersection point in polygon B
end

Figure 29: poly_vertex_link data structure

3.5 Third step: Connect edges 30

3.5 Third step: Connect edges

In the third step, the tagged edges are connected to form the new polygon(s). Which edges are
used and which are discarded is dependent on the clipping operation that is performed. Used
are:

for union outside edges of both polygons, shared edges of the subject polygon

for difference outside and reverse-shared edges of the subject polygon, inside edges of the

clip polygon in reverse direction

for intersection inside edges of both polygons, shared edges of the subject polygon

for exclusion outside edges of both polygons, inside edges of both polygons in reverse

direction

The time complexity of this step is O(n). n is the number of edges of both polygons.

3.5.1 Basic procedure
Starting at any intersection, the tags of the four neighboring edges are looked at. Dependent on
which clipping operation is performed, an adequate edge is selected and added to the resulting
polygon. If there are several edges at the intersection which are tagged adequately, the algorithm
selects the one which takes the sharpest turn left (see next section). The successive edges are
then followed and also added to the resulting polygon until the next intersection is reached. At
that intersection, the algorithm again determines which path to follow. This is repeated until the
edge with which the algorithm started is reached. At this point, the resulting polygon is
completed.

However, there can be several resulting polygons, so if there are intersections left that have not
been visited yet, another resulting polygon has to be started and the whole process is repeated
until that polygon is completed, too. If there are still intersections left which have not been
reached, the process is repeated.

The result of this final step can be any number of simple polygons.

In the below example (figure 32a-32d), the clip polygon B is subtracted from the subject poly-
gon A (difference operation). Each on the left side of the figures, the subject and clip polygons
are shown. On the right side, the resulting polygons are shown. Since it is obvious in this case,
the edges are not specially marked as inside or outside the other polygon.

3.5.1 Basic procedure 31

Figure 32a: The procedure starts at an intersection and follows the polygon border of
A which is outside of the polygon B to the next intersection point. The edges on the
way to that point are added to the resulting polygon (right side).

Figure 32b: On the next intersection, the border of polygon B is followed in reverse
(clockwise) direction because it is inside polygon A and added to the resulting
polygon. The next intersection is reached and one resulting polygon is complete.

Figure 32c: Two intersections have not been reached yet. That is why the procedure
starts anew at another intersection. A new resulting polygon is created and an edge is
added to it.

Figure 32d: Another intersection is reached which is the intersection with which the
second resulting polygon has been started. It is completed and no intersections are left
that have not been reached. The process is done.

3.5.2 Left hand rule 32

3.5.2 Left hand rule
Normally, at one intersection, there is only exactly one path to progress along the polygon
border – the other surrounding edges are out of question because they are tagged differently.
However, as also mentioned by Schutte [S4, p.6], there are exceptions. The best example is any
exclusion operation (XOR). In an exclusion, both inside and outside edges of both polygons are
used to construct the resulting polygons. At every intersection, there are two paths for the
procedure to choose. Figure 33 illustrates this:

When coming from edge pq , the resulting polygon could either be continued to be constructed
by choosing to proceed with the left edge or with the right edge that face away from q. The rule
here is to always choose the edge which takes the sharpest turn left (seen from the edge pq , in
this case) and thus make the resulting polygon as small as possible. If the direction is chosen
arbitrarily, the resulting polygon could intersect itself at one of its vertices and thus would not
be a simple polygon anymore. In some cases, it could even lead to erroneous results.

Note that there are intersections which can be gone through twice (all in the above example). So
if a resulting polygon is completed, that intersection can still be used to construct the next
resulting polygon. So, an intersection should not be marked as visited until all possible paths
away from the intersection have been walked through by the construction algorithm.

Figure 33: Exclude operation. Left side: subject and clip polygon,
right side: resulting polygons with arrows to mark in which direction
the edges are defined.

3.6 Dealing with holes in polygons 33

3.6 Dealing with holes in polygons

During all clipping operations but intersection, there
can arise holes in the resulting polygon(s). If the clip-
ping algorithm outputs polygons that it cannot handle
as input, the set of polygons it accepts would not be
closed under the clipping operation. This is fatal if the
clipping operation must be designed to be used over
and over again on the same set of polygons – as it is the
case in the application described in the introduction.

A hole for example arises in difference or exclusion
clipping operations when a small polygon is subtracted
from a big polygon that completely surrounds the small
polygon without intersecting its border. This is already
detected during the first step of the algorithm. If the
two polygons in figure 33 were to be clipped with
union, it would also result in a polygon with a hole.

Clearly, a polygon with a hole is not a simple polygon anymore, let alone one polygon. So
either, the definition of what kind of polygons are accepted and outputted by the clipping
algorithm must be changed, or the polygon with a hole must somehow be transformed into a
simple polygon.

Whether a polygon is defined clockwise and thus is a hole can be detected by calculating the
size of the polygon. If it is negative, it is a hole. Note that during one clipping operation, several
holes can arise.

There are three approaches to deal with holes in polygons:

3.6.1 Negative sub-polygons
The first is to let every polygon define any number of
holes inside itself. These holes would be represented by
“negative” polygons which are defined in reverse (clock-
wise) order. See figure 35 for an example. This seems to
be a swift solution because clockwise defined polygons
are what the clipping operation outputs as holes. This
approach is used by Peng et al. [P1]: they distinguish
between the counter-clockwise defined outer contour and
the clockwise defined inner contours of one polygon.

However, this approach has the big disadvantage that
these holes need to be accounted for not just in the clip-
ping operation but in every single algorithm regarding
the polygon because the holes also define the polygon's
shape. While this doesn't necessarily make things slower,
it just adds a lot of unnecessary complexity to the imple-
mentation (of any polygon-related algorithm).

Additionally, from the practical point of view, it is difficult to depict the polygon face (not the
border, though) on the screen. So, the polygons would probably end up being split into simple
polygons for the display operation anyway.

Figure 35: The arrows depict in
which direction the polygon is
defined. Clockwise defined
polygons have a negative size.

Figure 34: A polygon with two
holes.

3.6.2 Weakly simple polygons with “pipes” 34

3.6.2 Weakly simple polygons with “pipes”
The second approach is the one that was originally
conceived for that problem in this work: if all algorithms
are designed to work not only with simple polygons but
with weakly simple polygons, holes can be connected to
the outer border of the polygon by a “pipe”: two edges
on the same line with opposite directions (see figure 36).
The depicted polygon does not qualify as a simple poly-
gon anymore because its boundary touches itself. It then
is a weakly simple polygon (see section 2.1).

A similar solution was also used by Sechrest and Green-
berg [S3, p. 22] in their algorithm.

All algorithms presented in this work except for the clip-
ping operations work with weakly simple polygons
without any modifications. However, as it turned out, it
added a lot of unnecessary complexity to the clipping
algorithm for being able to claim it can handle any
weakly simple polygon: any point of a weakly simple
polygon can be part of any number of intersections with
itself (touching, not crossing). To account for this in
every step of the algorithm makes the algorithm a lot more complicated.

On the other hand, the trick with the pipe is not such a swift solution after all because it has to
be determined first where to put it. The topology of the polygon does not always allow to just
put two lines between the first vertex of the outer polygon border and the first vertex of the hole.
Also, in most cases, new vertices have to be inserted into the polygon which could cause the
polygon to change its shape in a way that self-intersections may arise (see section 3.3.1).

However, the most significant problem with this representa-
tion is that the method to determine the status of an edge at
an intersection during the clipping operation presented in
section 3.4.2 can fail for polygons with a pipe. See figure 37
for an example:

Polygon B intersects polygon A which has a hole that is
connected to the outer border through a pipe. At the inter-
section point p, it is not possible to determine the status of
the successive edge e in polygon B because the edge is both
left of two edges (thus, inside) and right of two edges (thus,
outside) around the intersection point of polygon A. To
simply tag the successive edge e the same as the previous
edge in polygon B works in this example but fails if all
intersections between polygon B and polygon A are on the
pipe. This case can not be excluded.

Because any weakly simple polygon can also be represented by several simple polygons, this
approach turned out to be too complex while offering no advantages over the third approach:

Figure 36: The holes are
connected to the outer border
through pipes. The width of the
pipes in this illustration are
magnified to depict their
functionality. In reality, there is
no space between the two edges
that form the pipe.

Figure 37: Two polygons
intersect. One of them has a
hole that is connected to its
outer border through a pipe.

3.6.3 Splitting into simple polygons 35

3.6.3 Splitting into simple polygons
In this approach, the polygon is split into two (or more)
polygons for each hole there is. In which direction the
cuts are made, does not matter. Also the positions of the
cuts do not matter as long as they go anywhere through
their polygon face. See figure 38 for an example. This
approach is also used in Schutte's [S4, p.8] algorithm.

The process is the following: for every hole there is, the
enclosing polygon (without the holes) is split into two.
The cuts are made where the holes are located. Then, all
holes are redefined to be defined counter-clockwise. The
interim result is a set of adjacent polygons without the
holes and a set of (positive) holes. After that, each hole is
subtracted from each of the polygons (difference clipping
operation).

Splitting a polygon into two is similar to a clipping oper-
ation but with the split line treated as a simple path (a simple polygon where the first and last
vertex is not connected): The intersections of the polygon and the line are first calculated and
memorized. Then, the new polygons are constructed along the outside edges of the polygon and
the inside segments of the line. However, the split line needs to be handled differently in the
second step of the clipping algorithm (edge labeling) since it doesn't define the area that is on its
left side to be inside. Also, during the third step its segments may be used in both directions to
create the resulting polygons as opposed to the edges of the polygon.

An easier but slower implementation is to create two split polygons that completely enclose the
subject polygon from the split line. These two split polygons are then clipped with the subject
polygon, using the intersection operation. See figure 39 for an illustration.

Splitting a polygon into two has a time
complexity of O(n): For a normal clipping
operation without the optimization using a
scanbeam, n⋅m intersection checks have to
be made (which is the most expensive opera-
tion in the algorithm). n is the number of
edges in the subject polygon, m is the number
of edges in the clip polygon. Since the
number of edges of the clip polygon(s) is
constant in both implementations mentioned,
the time complexity only depends on the
subject polygon.

Figure 38: Again, the spaces
between the three polygons are
magnified to show that there are
three polygons now. In reality,
there is no space between them.

Figure 39: (a) The line along which the
subject polygon should be split. (b) Two
polygons that enclose the subject polygon
run along the split line.

4 Spatial data structures and algorithms 36

4 Spatial data structures and algorithms
In the previous two chapters it was shown that the performance of any operation or check on a
polygon is solely dependent on the number of edges – neither its length nor its overall size.
Also, the polygon clipping is the most expensive operation as it runs in quadratic time (without
the optimization using a scanbeam) while all other checks run in linear time.

Now, for the application of a polygon-based landscape, not single polygons or a set of two poly-
gons are being dealt with but with a landscape that consists of a large number of polygons. For
example, if a point-in-polygon check is performed on the landscape, one does not want to know
whether the point is in one specific polygon; one wants to know in which of the possibly thou-
sands of polygons it is in (if it is in any). However, simply performing the point-in-polygon
check for every polygon there is, is highly inefficient. The same applies to intersection checks
with rays and for clipping operations.

So the goal of the spatial data structure in which the polygons are stored must be to efficiently
exclude polygons that are out of range of the point, line or polygon for which a check or opera-
tion is made. Also, since the performance of an operation is solely dependent on the number of
edges, single polygons should be kept small (in number of edges, not necessarily in size) and
compact. It is also desirable that operations and checks on polygons take about the same time
anywhere on the landscape in order to maintain an even processor load during runtime.

Algorithms for the polygon clipping presented in the previous section have been optimized to be
used one-time on a set of input polygons. The output polygons were normally not used as input
for further clipping operations. Specifically, the time tinit needed to process the data before the
algorithm and the time talgo to actually perform operations on the polygon(s) have not been
separated because it has been assumed that the algorithms are only applied once on the same
polygons anyway. However, for the application in games, the initial loading time is far less
important than the performance at runtime. So, if any calculations can be done initially (before
the actual operations take place), this will result in a speed gain every time an operation on the
landscape is performed.

One example for work that can be done at loading time is to sort the vertices of each polygon if
the scanbeam algorithm is used. This is otherwise done directly before the clipping operation. If
the vertices of each polygon are sorted initially, the sorted lists of the subject and clip polygon
just need to be merged before the actual clip operation. Merging two such sorted lists only takes
linear time. If a sorted list of vertices is already available, the scanbeam technique can also be
used in the point-in-polygon check, given that the ray cast (see section 3.3.2) is chosen to be
orthogonal to the scanbeam.

Much research has been done on the field of spatial data structures and algorithms as they
proved indispensable for the management of large amounts of data in fields such as database
management systems, computer graphics, computational geometry and geographic information
systems.

Due to the magnitude of this field of research, only an overview over the data structures that are
relevant for this application can be given in this work. Specifically, the implementation and its
affiliated issues and optimizations will not be discussed in detail.

A more in-depth description and comparison over the different spatial data structures with a
focus on hierarchical representations has been given by Samet [S5, S6] as well as Gaede and
Günther [G2].

4.1 Bounding box 37

4.1 Bounding box

A simple and common way to quickly determine if a given point, polygon or line is outside
another polygon is to use a bounding box. Sutherland et al. have described this method as the
minimax test [S1, p. 12-13] which quickly rejects polygon faces that do not overlap each other.

The bounding box of a given polygon is the
smallest rectangle parallel to the axes that can
be drawn around it. See figure 40 for an
example. The rectangle can be constructed by
choosing the x-coordinate of the leftmost
vertex as the left border, the x-coordinate of
the rightmost vertex as the right border, the
y-coordinate of the topmost vertex as the
upper border and y-coordinate of the bottom-
most vertex as the lower border of the rect-
angle.

Since a rectangle has a much simpler shape
than a (simple) polygon, it is faster to first
check if the given point is inside the bound-
ing box (for a point-in-polygon check), the given line intersects the bounding box (for an inter -
section with a line) or the bounding box of the given polygon overlaps with this bounding box
(for a clipping operation) before proceeding with the algorithm.

The more box-shaped a polygon, the more time is saved by using this technique. So if a polygon
is spread out very far, the bounding box is less effective. However, it is possible to actively
modify a polygon:

4.2 Splitting up a polygon

A polygon is a boundary-based representation of a region. If the boundary of a polygon is only
used to define the region it encloses, this region can also be represented by any number of smal -
ler polygons, as depicted in figure 41.

Thus, if a given polygon spreads out too far or grows too big (as in number of edges), it can
always be split up into several smaller polygons. This does not reduce the total number of edges
but still makes operations on that region faster: the bounding boxes more closely resemble the
actual shape of the region enclosed by the polygons, therefore more space can be disregarded as
outside the region by looking at the bounding boxes. Additionally, operations that only affect
parts of the region enclosed by the polygon have to work with fewer edges.

An example: To figure out whether the points p and q in figure 41 (a) lie inside or outside the
polygon A, a full point-in-polygon check has to be made for both. In 41 (b), the point p can be
discarded (as outside the region) after it has been determined that it is not in any of the bound-
ing boxes of the polygons in B. For point q, an actual point-in-polygon check (after checking all
bounding boxes of B) is only made for polygon f which consists of much fewer edges than poly-
gon A.

Figure 40: A few polygons with their
bounding boxes (in dashed lines)

4.2 Splitting up a polygon 38

Since the bounding box is an axis-aligned rectangle, it makes sense to make the cuts which split
the polygon A into multiple polygons along the axes. Apart from that, it can also make sense to
systematically split up the simple polygons into convex polygons. As described in the sections
2.4.1 and 2.5.2, both the point-in-polygon check and the intersection check with a line is faster
with convex polygons.

The process of splitting up polygons is the same as described in section 3.6.3.

Of course, the smaller the pieces into which the polygons are cut, the more polygons are
created. If there are many small polygons instead of few big polygons in the landscape, the main
goal in order to increase performance shifts from optimizing operations on single polygons to
optimizing the traversal through the bounding boxes of polygons.

4.3 Scanbeam algorithm

As described by Hsiao and Tsai [H1], the scanbeam (or: plane-sweep) paradigm can be used on
the level of sets of polygons, too. The algorithm works similar as described in section 3.3.2,
only that instead of the edges of a polygon, the bounding boxes of a set of polygons are
traversed: Given that the scanbeam moves vertically from top to bottom, the upper and lower
edges of all bounding boxes must be sorted by their y-coordinates first. During the algorithm a
bounding box is added to the list of active rectangles when its upper edge is reached and
removed again when its lower edge is reached. If new polygons appear during the operation (for
example if a polygon has been clipped), the list of sorted edges needs to be updated.

Hsiao and Tsai added that for most practical problems the plane-sweep algorithm alone is not
efficient enough and should be used in conjunction with a spatial data structure. The reason is
that the algorithm needs O(n log n) time to complete, where n is the number of polygons. Even
if the upper and lower edges of all bounding boxes were already assumed to be pre-sorted, the
algorithm would still have a time complexity that is linear to n, the number of polygons, since
all polygons need to be traversed for any operation. This does not scale well.

Additionally, it must be assumed that the number of polygons in the landscape changes
constantly during runtime: new polygons are added, some others are clipped and others
removed. Any data structure that uses the scanbeam algorithm on this level needs to re-sort the
list of bounding boxes on any of these events.

Figure 41: Polygon A and the set of polygons B=
{a,b,c,d,e,f,g,h} are both representations of the same region.
The bounding boxes are shown as dashed lines. Also depicted
are the points p and q.

4.4 Grid 39

4.4 Grid

A simple and efficient solution is to arrange the polygons in a uniform grid. Each cell in the grid
contains a set of links to polygons that intersect with it. This set can also be empty if there is no
polygon in the grid cell. If a polygon changes its shape due to a clipping operation or is removed
altogether the links to that polygon need to be updated in the data structure. To efficiently imple-
ment this, each polygon also needs to link back to any grid cells it is linked from.

If the grid is implemented as an array, the access to one cell has an unbeatable time complexity
of O(1). So, to perform an operation on a region only depends on the number of polygons in the
grid cells that intersect with that region, but not on the overall number of polygons.

On initialization the density of the grid (the size of the cells) has to be defined. The smaller a
cell, the less polygons it intersects. This makes accessing polygons at random positions more
efficient. However, the smaller a cell, the more cells there are and the more cells link to one and
the same polygon which in turn needs to link back to the cells (see above). This does not only
lead to a higher memory usage but also slows down any operation that alters the landscape
because the references between the altered polygons and the grid need to be updated. The more
cells and polygons that need to be updated, the longer the process takes: if a polygon that spans
over 10 x 10 cells is deleted, 100 references to the polygon need to be deleted from the grid
cells (as well as 100 references to the grid cells in the polygon).

Determining an optimal grid density is a difficult task because the polygons can be very differ -
ent in size and in number of edges at different areas of the landscape. Regardless of which cell
size has been defined, some polygons might span over dozens of cells while others might share
one cell with dozens of other polygons. So in areas with big polygons the cells should be larger,
whereas in areas where many small (and detailed) polygons are crammed together, the cells
should be smaller. Figure 42 shows an example of this arrangement:

Polygon A spans over four grid cells while for
example the upper right cell (of the ones A is
in) only intersects with two polygons.
However the cell in which polygon B is
contained in links to eleven polygons, most of
which have a lot of edges compared to their
size. Thus, one problem of this data structure
is that the cells in the grid have a static size. It
is not possible to define different sizes for the
cells in different areas of the landscape.

Also, once the density of the grid has been
defined, it can't be changed anymore without
completely rebuilding the data structure. This
can become a problem because it can lead to
notable differences in performance on the
access on different areas of the landscape.
This is undesirable for an application that
should run in real-time, especially if one
keeps in mind that during runtime, the land-
scape can change continuously: If the land-
scape is clipped in the same area with differ-
ent polygons repeatedly, the total number of
edges in that area tends to increase because
the boundaries of the polygons get more
detailed (as in short but numerous edges).

Figure 42: A two dimensional landscape
shown with a uniform grid. Two polygons (A
and B) are highlighted.

4.4 Grid 40

Since any polygon could be referenced by
several grid cells, it must be ensured that the
same polygon is not included twice in opera-
tions that deal with the polygons of more than
one cell (like an intersection check with a line
or a clipping operation).

For this reason, it makes sense to cut the
polygons along the grid as shown in figure
43. After doing this, no two cells in the grid
link to the same polygon anymore. Thus, one
cell does not link to all polygons that inter-
sect with it but it links to all polygons that are
contained in it which effectively makes a grid
cell a bounding box of the (set of) polygons it
contains.

However, this does not solve the problem of
the static grid size.

4.5 Trees

A tree is a hierarchical data structure which can solve this problem. Specifically, trees that parti -
tion a two dimensional space recursively into smaller regions overcome the limit of the static
cell size in a grid.

4.5.1 Storing point data
A quadtree is a tree data structure in which each node that is no leaf has four children. A leaf
node has no children and represents a cell in this context, thus holds the spatial data. When a
previously defined maximum capacity of a leaf has been reached, its underlying space is split up
into four new cells - one to the upper left (also referred as northwest), upper right (northeast),
lower left (southwest) and lower right (southeast). The former leaf node now has four children
by himself. If data inside the cells is deleted, this can of course also be done in reverse so that
the tree always adapts to changes in the landscape.

Because of this property, quadtrees are eligible to represent cells that are variable in size and
thus different densities throughout the landscape. However, the average time complexity to
access a specific cell in a quadtree is usually O(log n) (where n is the number of elements stored
in it) as opposed to the constant time complexity in a grid.

Originally, Finkel and Bentley introduced quadtrees as a data structure that stores two dimen-
sional point data, point quadtrees [B1]. In their approach, each node itself stores one point
which at the same time defines the center of the space underlying that node. The vertical and
horizontal division lines are drawn from that center. A quadtree which always decomposes its
underlying space into cells of equal size and thus only stores the point data in its leafs has been
described as a PR quadtree by Hamet [S5] (P stands for point, R for region). The difference
between these two quadtrees is shown in figures 44 and 45.

As the structure of a PR quadtree is not dependent on the location of the points inside of it, it is
more eligible to work with data that changes continuously even though it tends to have a higher
depth than the point quadtree with the same maximum capacity.

Figure 43:The polygon landscape split up
on the grid

4.5.1 Storing point data 41

The kD tree which holds point data (2D tree for two dimensional data) has been introduced by
Bentley [B2]. Like the quadtree, it is also based on a recursive partition of space. However, for
each level in the tree, the space is only subdivided into two sides. So, per level, each one dimen-
sion is cycled through: For example, in a 2D tree the plane is split into two along the x-axis on
the first level, along the y-axis on the second level, again along the x-axis on the third level etc.

A kD tree is less wide but usually has a higher depth than a quadtree. Rosenberg compared the
memory usage and overall performance of a kD tree with that of a quadtree [R3]. He concluded
that it is more expensive in terms of memory (but only by a constant factor) and, more import-
antly, outperforms the quadtree at region searching and particularly in point searches (less nodes
are visited). The average time complexity of a kD tree is the same as for a quadtree.

Figure 45: A PR quadtree with the same point data. The maximum capacity of a cell in this
example is 1. (a) shows the partition of space and (b) the representation of the points in the tree.
The bordered squares and circles stand for empty (leaf) nodes.

Figure 44: A point quadtree with some point data. The maximum capacity of a cell in this
example is 1. (a) shows the partition of space and (b) the representation of the points in the tree.
The bordered squares stand for empty leaf nodes.

4.5.1 Storing point data 42

Like the point quadtree, the kD tree has been designed to store a point in each node and perform
the subdivision at that point. So, a PR kD tree is a kD tree in which each node splits the space
into two evenly sized sides as shown in figure 46.

4.5.2 Storing rectangle data
So far, only tree data structures that store point data, not rectangle data, have been described.
However, both presented PR trees can be generalized to also be able to store rectangle data:
Each node of a PR tree that stores rectangles contains a set of rectangles it fully contains. Figure
47 shows an example for a PR quadtree that stores rectangles.

Figure 46: A PR 2-d tree with again the same point data and a maximum capacity of a cell of 1.
(a) shows the partition of space and (b) the representation in the tree. The bordered squares and
circles stand for empty (leaf) nodes.

Figure 47: A PR quadtree used for rectangle data. (a) shows the partition of space while (b)
shows the representation in the quadtree. The bordered squares stand for nodes with no
rectangles inside.

4.5.2 Storing rectangle data 43

The lower a rectangle can be sorted into the tree, the more rectangles can be excluded from a
point or region query. This must be the goal of the data structure. This is why the region in the
above example is split up further until no rectangle can be sorted at an even lower position into
the tree.

This data structure has a problem though: all rectangles that intersect with any of the division
lines of the cells have to be checked, even if they are far away from the actually queried region.
If for example a point-in-polygon check is performed on the region around rectangle d in figure
47, the rectangles g, i, f, c and e have to be checked for containment of the point because these
are in the upper nodes of the tree. Also, at which level the rectangles are sorted into the PR tree
is not dependent on their size but on their position. More precisely, the level of the node that
defines the division line the rectangle intersects with.

Figure 48 illustrates this problem: polygon A will be sorted into a node that is a direct child of
the root node, despite its small size.

Because a PR kD tree only splits the plane in
half per level, the rectangles are sorted into
the tree a little bit deeper and thus it does a
slightly better job at excluding rectangles that
are not in the queried region. Polygon i from
figure 47 for example would be stored in the
second level of the tree instead of in the root
node if the plane were first split along the x-
axis.

Kedem introduced the quad CIF tree in the
context of VLSI (very large scale integration)
technology [K1] in which he offered a solu-
tion to partly tackle this problem. The quad
CIF tree is a quadtree that functions the same
way as the PR quadtree described above with
the only exception that the rectangles which
are completely contained in a cell are not
saved in a list (or set) but in two binary trees
(also called bisector lists): roughly, one
binary tree with all the rectangles that inter-
sect with the node's horizontal division line sorted by x-coordinates and one binary tree with all
the rectangles that intersect with the node's vertical division line sorted by y-coordinates. This
data structure makes it faster to traverse through and discard the excess rectangles. Lai et al.
described a similar approach for 2D trees (which they call HV/VH trees) [L2].

Another method is to sort the rectangles of each node by their coordinates and use the scanbeam
algorithm on this level to traverse through them faster. However, both methods don't solve the
root of the problem: that rectangles are sorted into upper levels of the tree because of their posi -
tion.

So, if the preconditions mentioned in section 3.6.3 are met, a final solution for this problem (in
this application) is to split the polygon up along the division line(s) of a node just like it is done
in the grid. Each node and with it all polygons inside of it are split up if a previously defined
maximum number of edges is reached. This ensures that the size of a cell automatically adapts
to the state of the landscape. To access a given cell in the landscape takes about the same time
anywhere on the landscape. Thus, the overall performance of a point query within the landscape
can be reduced to the traversal through the PR tree that has a depth of O(log n) plus a constant
factor for the access on a certain cell. This helps to meet the requirement to maintain an even
processor load during real-time usage of the landscape.

Of course, this is still combinable with any data structure that makes the traversal through the
bounding boxes in one cell faster.

Figure 48: A two dimensional landscape
shown with a quadtree. Polygon A is
highlighted.

4.5.2 Storing rectangle data 44

Even though the access to single cells in a grid is faster than with a tree, the cell size in a grid is
static and thus there is no upper limit for how long the operation within a cell will take. This is
why the usage of a tree should be preferred in this application for its ability to dynamically
adjust the size of each cell; it guarantees that for any given cell, the operation within it will take
a constant amount of time.

If the polygons in the game world are supposed to describe more than their enclosed regions for
example if the polygons ought to be subjected to gravity or generally be able to move as a
whole, they can't be split up arbitrarily. One solution would be to split them up nevertheless but
let the pieces of one chunk that ought to stay together during movement link to each other.
Another solution is to store polygons which should be able move in another data structure than
the rest of the landscape.

Possible for these polygons are also bucketing-methods like the R-Tree and derivatives which
have not been described in this work. See for example Samet [S5] for an explanation.

5 Conclusion 45

5 Conclusion
To create a working polygon-based implementation of a changeable 2D landscape for games is
not a trivial task. Specifically the implementation of a clipping algorithm (see chapter 3) that is
also applicable for games adds more complexity because of the additional requirements
mentioned in the introduction, namely to work with integers and to return the same class of
polygons that it accepts.

Every possible output of a clipping operation needs to be accepted by any other clipping opera-
tion as input. This requires the clipping algorithm to both accept any combination of (weakly)
simple polygons as well as to fix up any result that is not initially in the set of simple polygons.
As it turned out, there are many edge cases that need to be considered to fulfill this requirement.
A clipping operation that for example only accepts simple polygons but in some cases outputs
certain weakly simple polygons is not acceptable. Additionally, the clipping operation needs to
function correctly with the limited precision of integers. The usage of fixed point numbers
instead of floating point numbers revealed a number of problems that already existed for previ-
ous implementations based on floating point numbers but were probably overlooked or deemed
insignificant (see section 3.3.1).

In an implementation based on integers, it becomes likely that the two polygons intersect each
other exactly at the end points of one of their edges as well as that the polygons intersect in
(several) line segments instead of just points. Additionally, edges whose midpoint can not be
calculated, like for example edges with a length of just one unit one, can become a problem
since it is not reliable to determine their containment in the other polygon via the point-in-poly-
gon check (see chapter 3.4). The algorithm presented in section 3.4.2 solves this problem but
only for polygons which do not touch themselves at lines, like simple polygons (cf. section
3.6.2). Another important issue is that the shape of the polygon can be altered by any insertion
of a new vertex which can theoretically lead to any number of new intersections between the
polygons but also within the polygon to arise. This issue has been discussed and solved in
section 3.3.1. The removal of holes in the set of resulting polygons explained in section 3.6.3
again requires the usage of clipping operations, both in order to split the polygons along a line
and to subtract the holes from those polygons. This too makes the clipping operation more
complex and more expensive because theoretically any number of holes can arise during a clip-
ping operation.

In chapter 2, the basic algorithms and checks on polygons like the point-in-polygon check, the
calculation of the size or the intersection of a polygon with a line have been described. These
algorithms are essential for any implementation of a two dimensional landscape based on poly-
gons, independent of whether the landscape should be changeable or not. Also, the use of
spacial data structures which have been discussed in chapter 4 are necessary for any landscape
that is supposed to run real-time and consists of more than a couple of polygons.

To summarize, this thesis offers an approach how to implement a polygon-based landscape that
can also be changed during the course of the game. This makes it possible to design games that
have destructible landscapes while still having the benefits of edge-based landscapes over interi-
or-based landscapes. Of course, the implementation is not limited to be used in games since the
employment in games must fulfill additional requirements than previous edge labeling
approaches for polygon clipping, not less.

Thus, the implementation can be used in any other area in which polygon clipping algorithms
have been used so far and additionally in areas in which the same set of polygons might be
continuously clipped (in real-time).

5 Conclusion 46

Regarding its application in games, the implementation is only an alternative approach to the
pixel-based landscape, not a replacement.

The reason is that a pixel-based landscape is still unbeatable in performance for what it is
designed for: small but continuous modifications on the landscape. The time complexity to
change areas in a pixel-based landscape behaves linear to the number of pixels that have to be
changed and is relatively7 independent of the actual size of the whole landscape. To subtract a
single pixel from the landscape only involves changing a single value in the two-dimensional
array, thus runs in O(1). To change a single pixel (or, in this case, a tiny square) from a polygon-
based landscape has the same time complexity as any other clipping operation as it is not
dependent on the size of area involved but the total number of polygons in the landscape as well
as the number of edges of the polygons actually involved.

Because the costs to change an area in a pixel-based landscape grows quadratically to its radius
in pixels (A=π r2), the same operation on a polygon-based landscape can actually be faster for
very large areas at some point because the number of edges of a polygon is linear to the area it
encloses (P=2π r). However, the normal use case of making changes to the landscape in a
game involves the continuous subtraction of relatively small areas like digging through the earth
or making explosions. For this thesis not tests have been commenced to find out how big an
area would have to be that a clipping operation runs faster in a polygon-based landscape as it
was beyond the scope of this work. Though, due to the complexity of a single clipping opera-
tion, it is assumed that this would involve areas which are much bigger than anything actually
used in games.

Typical simple checks made on the landscape in a game are, amongst others, collision and
containment checks to find out if a moving object collides with the landscape and whether it is
contained in a (solid) material.

A collision check in a polygon-based landscape is done by intersecting the current movement
vector of the object with the polygons in the landscape (see section 2.4) and is thus also depend-
ent on the total number of polygons in the landscape as well as the number of edges of the poly-
gons actually involved. If the line segment intersects with a polygon, the object collided. A
collision check in a pixel-based landscape works by checking for each pixel between the current
position of the object and the position plus the movement vector if it is a solid material. If there
is solid material, the object collided at that point. This check is only dependent on the length of
the current movement vector in pixels: if an object only moves 3 pixels in a time step, the two-
dimensional array only needs to be accessed 3 times for a complete collision check. Thus, a
collision check is much faster in a pixel-based landscape than in a polygon-based landscape for
reasonable speeds of objects. The same applies for a containment check. For a polygon-based
landscape, a point-in-polygon check needs to be done on the landscape (see section 2.5) while
for the pixel-based landscape, only a single value in the array needs to be accessed.

However, the primary reason for a landscape based on polygons is not the performance of these
operations. As mentioned in the introduction, modern physics engines only work with geometric
shapes like polygons and thus require the landscape to be defined as an edge-based representa-
tion. This is because a physics engine does not only simulate collisions and does containment
checks. The size, mass and shape of an object must be known to simulate pressure, friction, its
kinetic energy and generally forces that act on it.

To calculate the surface at one spot is much simpler with a polygon-based landscape as it is
already edge-based while the pixel-based landscape is interior-based. The surface (= edge in this
case) in a pixel-based landscape would have to be searched by a (local) edge-detection
algorithm first while it is already available in the polygon-based landscape. The size of a certain

7 given that the whole landscape fits in the memory so that no page-faults occur

5 Conclusion 47

chunk of material is simply calculated by the Gaussian trapezoid formula (see section 2.2) in a
polygon-based landscape. In a pixel-based landscape there is not even a clear notion of an inter-
connected material chunk. The edges of the said chunk would have to be searched for first, then,
every pixel in that chunk would have to be counted separately.

Additionally, it is next to impossible in a pixel-based landscape to actually include the landscape
itself in the physics simulation. For example, to make certain parts of the landscape fall off,
move around, float on water and especially rotate is simply not possible in the data structure of
a two-dimensional array because it is static, like a raster graphic. So, compared to the pixel-
based landscape, the polygon-based landscape adds new possibilities to make the landscape
more dynamic. After all, this is one of the reasons why many modern platform games don't use
the tile-based approach for a landscape anymore.

This thesis is about a polygon-based landscape with the extension of being able to change it as
an alternative to a pixel-based landscape. However, no direct comparison in performance
regarding both the modifications and the checks on the landscape between the polygon-based
and the pixel-based landscape has been made. So the assumptions about the performance made
in this conclusion are only based on time complexity of these algorithms. It would be interesting
to know how the two different approaches perform in direct comparison but as mentioned
above, this would have gone beyond the scope of this bachelor thesis.

Also, the optimizations in performance using spatial data structures have not been covered in
detail, especially in respect to the typical operations done in physics simulations, including for
example fluid simulation. However, this already reaches into the broad subject of physics simu-
lations in computers in general. This is another topic that could be dealt with in future works.

Apart from the benefits of polygons in physics simulations, there are also a few advantages
regarding graphics. Like a vector graphic, any edge-based landscape can be zoomed in without
limitations since the level of detail of the landscape is not chained to the resolution of the
screen. That is why an edge-based landscape is especially eligible for games that otherwise use
3D graphics (as these are also based on polygons). A pixel-based landscape gets blurry or
pixelated if zoomed in, like a raster graphic. Also, it should be noted that modern hardware is
optimized to render polygons. While it is not a problem at all to render the whole pixel-based
landscape as a texture, a polygon-based landscape adds the possibility to render it more dynam-
ically. As the example Klonoa: Door to Phantomile (see figure 4) shows, the game landscape is
not limited to be displayed orthogonal to the camera viewing direction. Furthermore, it is
possible to use vertex and geometry shaders on the polygons or add certain special effects to
specific material chunks.

To summarize, a landscape based on polygons is more versatile than a landscape based on a
two-dimensional array, but at the cost of complexity in implementation and performance.

 References 48

References
[B1] R. A. Finkel and J. L. Bentley. 1974. Quad Trees A Data Structure for Retrieval on

Composite Keys. Acta Informatica 4, 1-9 (1974)

[B2] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (September 1975), 509-517

[D1] Revar Desmera. 2009. Boolean Areal Geometry. http://revar.livejournal.com/81627.html

(last visited: January 2011)

[F1] James D. Foley and Andries Van Dam. 1982. Fundamentals of Interactive Computer
Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[G1] Günther Greiner and Kai Hormann. 1998. Efficient clipping of arbitrary polygons. ACM
Trans. Graph. 17, 2 (April 1998), 71-83

[G2] Volker Gaede and Oliver Günther. 1998. Multidimensional access methods. ACM
Comput. Surv. 30, 2 (June 1998), 170-231.

[H1] Pei-Yung Hsiao and Chia-Chun Tsai. 1990. A new plane-sweep algorithm based on
spatial data structure for overlapped rectangles in 2-D plane. Computer Software and
Applications Conference, 1990. COMPSAC 90. Proceedings., Fourteenth Annual
International , vol., no., pp.347-352, 31 Oct-2 Nov 1990

[K1] Gershon Kedem. 1982. The quad-CIF tree: A data structure for hierarchical on-line
algorithms. In Proceedings of the 19th Design Automation Conference (DAC '82). IEEE
Press, Piscataway, NJ, USA, 352-357.

[K2] David W. Krumme, Eynat Rafalin, Diane L. Souvaine, and Csaba D. Tóth. 2006. Tight
bounds for connecting sites across barriers. In Proceedings of the twenty-second annual
symposium on Computational geometry (SCG '06). ACM, New York, NY, USA, 439-
448

[L1] You-Dong Liang and Brian A. Barsky. 1983. An analysis and algorithm for polygon
clipping. Commun. ACM 26, 11 (November 1983), 868-877

[L2] Lai, G.G., Fussell, D. and Wong, D.F. 1993. HV/VH Trees: A New Spatial Data
Structure for Fast Region Queries. Design Automation, 1993. 30th Conference on , vol.,
no., pp. 43- 47, 14-18 June 1993

[M1] Francisco Martínez, Antonio Jesús Rueda, and Francisco Ramón Feito. 2009. A new
algorithm for computing Boolean operations on polygons. Comput. Geosci. 35, 6 (June
2009), 1177-1185

[P1] Yu Peng, Jun-Hai Yong, Wei-Ming Dong, Hui Zhang, and Jia-Guang Sun. 2005.
Technical section: A new algorithm for Boolean operations on general polygons.
Computers and Graphics 29, 1 (February 2005), 57-70

[R1] Ari Rappoport. 1991. An efficient algorithm for line and polygon clipping. The Visual
Computer 7 (1991), 19-28

http://revar.livejournal.com/81627.html

 References 49

[R2] M. Rivero, F. R. Feito. 2000. Boolean operations on general planar polygons,
Computers & Graphics, Volume 24, Issue 6 (December 2000), 881-896

[R3] Rosenberg, J.B. January 1985. Geographical Data Structures Compared: A Study of
Data Structures Supporting Region Queries. Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on , vol.4, no.1, pp. 53- 67

[S1] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. 1974. A
Characterization of Ten Hidden-Surface Algorithms. ACM Comput. Surv. 6, 1 (March
1974), 1-55

[S2] Ivan E. Sutherland and Gary W. Hodgman. 1974. Reentrant polygon clipping. Commun.
ACM 17, 1 (January 1974), 32-42

[S3] Stuart Sechrest and Donald P. Greenberg. 1981. A visible polygon reconstruction
algorithm. In Proceedings of the 8th annual conference on Computer graphics and
interactive techniques (SIGGRAPH '81). ACM, New York, NY, USA, 17-27

[S4] Klamer Schutte. 1995. An Edge Labeling Approach to Concave Polygon Clipping.
(unpublished)

[S5] Hanan Samet. 2010. Multidimensional data structures for spatial applications. In
Algorithms and theory of computation handbook (2 ed.), Mikhail J. Atallah and Marina
Blanton (Eds.). Chapman & Hall/CRC 6-6.

[S6] Hanan Samet. 1988. Hierarchical representations of collections of small rectangles.
ACM Comput. Surv. 20, 4 (December 1988), 271-309.

[V1] Bala R. Vatti. 1992. A generic solution to polygon clipping. Commun. ACM 35, 7 (July
1992), 56-63

Affirmation
I hereby assure that I wrote this bachelor thesis independently. No other than the given aids have
been used. I further assure that this work has not been submitted to any other examination
procedure before and that both the version on paper and the version on the electronic storage
medium are the same. I also agree to the inclusion of this work into the library of the department
of Informatics, University of Hamburg.

 Place, Date, Signature

	1 Introduction
	2 Polygon basics
	2.1 Definition
	2.2 Size and circumference
	2.3 Determining convexity
	2.4 Intersection with a line
	2.4.1 Optimization: Line intersects a convex polygon
	2.4.2 Optimization: Intersection with a ray

	2.5 Point in polygon check
	2.5.1 Special case: Ray hits vertex or intersects in a line
	2.5.2 Optimization: Convex polygons

	3 Clipping operations on polygons
	3.1 Previous work
	3.2 General concept
	3.3 First step: Intersections
	3.3.1 Special case: Additional intersections are created
	3.3.2 Optimization: Using a scanbeam

	3.4 Second step: Labeling
	3.4.1 Labeling process
	3.4.2 Determine status of edges at intersections
	3.4.3 Implementation and data structure

	3.5 Third step: Connect edges
	3.5.1 Basic procedure
	3.5.2 Left hand rule

	3.6 Dealing with holes in polygons
	3.6.1 Negative sub-polygons
	3.6.2 Weakly simple polygons with “pipes”
	3.6.3 Splitting into simple polygons

	4 Spatial data structures and algorithms
	4.1 Bounding box
	4.2 Splitting up a polygon
	4.3 Scanbeam algorithm
	4.4 Grid
	4.5 Trees
	4.5.1 Storing point data
	4.5.2 Storing rectangle data

	5 Conclusion
	References
	Affirmation

