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Preface
On the 23rd of May 2009, the source code of the  Clonk game engine was officially released 
under the ISC license (a permissive open source license) after fifteen years of being distributed 
as shareware. A group of hobby programmers and enthusiasts in which I was part of founded the 
OpenClonk1 project soon after the game engine was made open source. The project was dedic-
ated to the further development of the game. That the game engine was made open source made 
it possible to completely overhaul the game, and try out new technologies. 

Inspired by various physics sandboxes like Phun or Crayon Physics, the idea to make use of an 
open source physics engine for the game came up at one time. However, we quickly had to find  
out that it is very difficult to get this to work because the landscape of Clonk is represented as a 
two-dimensional array, like a raster graphic. Physics engines however, work only with geomet-
ric shapes like lines, circles, rectangles and polygons. Additionally, as the landscape of Clonk is 
basically a raster graphic, it looks all pixelated when zoomed in. Now, there is a very good 
reason for Clonk to have this kind of landscape representation: half of the gameplay revolves  
around digging through the landscape and mining for resources. It is essential for the gameplay 
that the landscape is changeable and specifically, destructible. A pixel-based landscape enables 
an easy and fast modification and destruction of the landscape through simple modification of 
the single pixels in the array, like in a graphics painting program.

Game landscapes based on polygons had been done before. What hadn't been done before was a 
landscape representation based on polygons that was also creatable and changeable like a raster 
graphic:  paint  and erase the polygon-based landscape with a brush tool,  not  just  create and  
change the landscape by (re)defining the vertices of the polygons. So the initial motivation to 
investigate whether or not an implementation of a changeable landscape based on polygons is 
feasible or not came from my involvement in the development of this game.

However, after some tests, it quickly turned out that the implementation of a landscape with 
these properties was anything but trivial. Also, I noticed that much work has been done on the 
field of polygon clipping (the operation with which polygons are added or subtracted from each 
other) and related areas in science already. Since the subject of reliable clipping operations for  
continuous use (which is required for games with changeable landscapes) has not been covered  
yet, I decided to discuss this subject properly in a thesis.

At this point I want to thank the people who supported me by pointing out mistakes, missing or 
ambiguous  explanations  in  the  thesis  or  helping  me  to  debug the  implementation  and find 
errors: Dr. Werner Hansmann, one of my supervisors, my fellow student and flatmate Niels 
Beuck,  my mother (for  trying)  and also the people from the OpenClonk project,  especially 
Armin Burgmeier,  Peter  Wortmann,  Charles Spurril,  Günther Brammer,  Sven Eberhardt  and 
Matthias Rottländer. 

Except for the screenshots in figures 1-4 which are taken from various games, all figures in this 
work are created by myself (in Inkscape).

1 The project's website can be found at http://www.openclonk.org/

http://www.openclonk.org/
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Abstract
There  are  two  main  approaches  for  the  representation  of  a  landscape  in  two-dimensional 
computer games: Interior-based landscapes and edge-based landscapes. Modern games with an 
edge-based  landscape  enable,  amongst  other  things,  the  use  of  advanced  physics  engines. 
However, no game is known to the author that features an edge-based landscape which is at the  
same time completely changeable (destructible).

This thesis offers an approach for an implementation of a two-dimensional landscape based on  
polygons  which  is  dynamically  changeable  in  real-time.  This  includes  a  description  of  
algorithms that are utilized for typical operations in an edge-based game landscape like collision 
detection or containment checks. The main focus of this thesis, however, lies on the proposal of  
a  polygon-clipping algorithm that is eligible for continuous usage in the game and enables a 
polygon-based landscape to be completely changeable. Finally, efficient spacial data structures  
are discussed that can be used to store this kind of landscape and make queries on the landscape  
perform in reasonable time.
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1 Introduction
There are different approaches for how the game area or landscape of computer games that take 
place in a two dimensional game world is represented. Subsequently, two basic approaches are  
described. Interior-based approaches define a (solid) area on the basis of its interior, while edge-
based approaches define that area only by a border which encloses the area.

The usual approach for the popular genre of platformers (also called jump 'n' runs) and other 
side-scrollers2 is to use a tile-based one. Some of the first popular video games that used this 
technique were Super Mario Bros. (1985), Commander Keen (1990) and Sonic the Hedgehog 
(1991).

The landscape of many modern 2D platformers is still based on tiles, sometimes however only 
to reuse graphics and make level design easier. A landscape that is represented in tiles ( tile-land-
scape) consists of a two-dimensional array in which each entry references a predefined tile type. 
Each tile type defines a graphic and a solid area which is usually a simple geometric shape like 
a box or a slope, but is not limited to that. Collision checks between moving objects and the 
landscape in these games are simple and fast because normally only the one tile the object is in 
needs to be looked at.

Figure illustrates how tiles work.

The left image shows a screenshot from the game. If the landscape is overlayed with a grid and  
the characters removed (center image), one can see that the landscape is actually composed of 
square tiles of equal size with the same graphics for the same tile type. The right image shows  
the solid areas in the tile-based landscape. Some tile types in this game are solid (depicted as  
black blocks), others are platforms on which it is possible to jump from below (depicted as thick 
lines). For each tile type any number of unique properties such as geometric shape, animations, 
damage when touched etc. can be defined but each tile can only have one property – its tile type.

The first computer games that featured fully destructible 2D landscapes were the (usually turn-
based) artillery games in which two or more players would shoot at each other in trajectories.  
Popular games in this minor genre included  Scorched Earth (1991), the  Worms series (1995-
present) plus derivatives and GunBound (2005). Other games not based on the artillery genre 
that take advantage of a fully destructible (and changeable) 2D landscape include  Lemmings 
(1991) and the Clonk series (1994-present). Figure 2 shows two examples for games with pixel-
based landscapes.

2 Side-scroller  is  the  term originally used for  video games that  are seen  from the side  and  whose  
landscape is too extensive to fit on one screen so that the camera needs to follow the gameplay action.  
The most popular genre that uses this format is that of platformers but it is also used in other genres 
such as beat em' ups or (2D) shooters.

Figure 1: This figure illustrates how tiles work on the basis of a screenshot from Super Mario  
Bros. 3. 
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This kind of game landscape has too been implemented as a two-dimensional array in any of the 
mentioned games. Basically, a pixel-landscape is a tile-landscape with a tile size of 1x1 pixels 
where the solid pixels do not define any other geometric shape than a box. On the other hand, 
the landscape as a whole can have any shape and is not limited to the predefined tile shapes.  
Each pixel in that landscape can be changed in the game like in a raster graphic which is the  
prime advantage of this representation. Of course, this also means that this approach takes up  
much more memory than the standard tile-based approach. For example, a pixel-landscape that 
covers a game area of the same size as that of a tile-landscape with tiles that have a size of  
20x20 pixels would need to store 400 times more tiles than the tile-landscape.

In this approach, every pixel in the landscape references a certain tile type too, in this context  
however it should be called material.

The access to single areas of the landscape for simple collision checks is slower because of the  
increased resolution but still reasonably simple as it is also based on a two-dimensional array.

A completely  different  approach  to  the  representation  of  the  landscape  is  the  edge-based 
approach. In this approach, the solid landscape is represented by line segments or polygons.  
Simple things like walls and platforms which are essential for platformers can be represented by 
lines. More complex shapes that could otherwise only be represented in a pixel-landscape can  
be represented as polygons (a polygon-landscape).

Edge-based  landscapes only emerged recently and are used mostly in  indie3 or open source 
games where physics play an all important role in the gameplay. Examples of 2D games with 
advanced physics simulations are X-Moto (2005), World of Goo (2008), LittleBigPlanet (2008), 
Trine (2009), PixelJunk Shooter (2009) and Limbo (2010). 

So, a prime reason for the use of a polygon-landscape is that freely available 2D physics engines 
like ODE (2001), Bullet (2003) or Box2D (2007) require the landscape to consist of only edge-
based geometric shapes. Advanced physics simulations turned out to be very popular in games 
and nowadays, computers are powerful enough to perform this kind of simulation in real-time.  
Generally, collision checks and other simple physics are less trivial to implement and perform in 
reasonable time in polygon based landscapes than in tile based landscapes, however, when it  
comes down to more advanced physics calculations, the surface and shape of the involved parts  
of the landscape must be known. Of course it is possible to use (local) edge detection algorithms 
on an interior based landscape but this is where it gets really cumbersome and slow.

As only the border of a solid area is stored, an edge-based approach tends to be more memory 

3 Games that are developed in small teams or companies with no financial support by publishers are 
commonly referred to as independent games or indie games. They are usually only distributed online. 
The games themselves are low budget and focus more on innovation rather than established game 
mechanics and graphics.

Figure 2: On the left: A phone port of Worms (2009), on the right: Clonk Rage (2008)
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efficient than an interior-based approach. However, its memory usage and performance is not  
dependent of its actual size (in pixels) but its number of edges (its detail).

Figure 3 shows two examples for games whole landscape is based on polygons.

Additionally, a tile-based landscape imposes many limitations on the design of a level.  This  
limit is quickly reached in graphically more elaborate games. That is why many modern so-
called 2.5D platformers, 3D platform games with a two-dimensional game area, use at least4 an 
edge-based approach for the solid parts  of  a landscape while rendering the graphics in 3D.  
Examples include Klonoa: Door to Phantomile (1998), Viewtiful Joe (2003), Shadow Complex 
(2009) and Donkey Kong Country Returns (2010). See also figure 4.

Currently there is no game known to the author that features a landscape which is both edge-
based to enable the use of advanced physics simulation and is at the same time fully destruct-
ible. This might be the case because the implementation of a destructible (or generally: change-
able) landscape on the basis of polygons is not trivial to implement, but can also be explained 
by considering that the development in the sector of 2D computer games did not get quite as  
much attention in the past decade by the big game development studios as the sector of 3D 
games. With that reasoning, it is no wonder that the recent innovations in 2D gameplay have  
been coming from independent games rather than from the big game studios.

However, it should be noted that there are two most probably edge-based games which feature 
at least the destruction of parts of the game area: The 2D physics sandbox  Algodoo (2009) 

4 It is difficult to find out what technique a game uses exactly. One can only guess from looking at how 
it works and what would be expedient in their case. In the case of 2.5D games, they could of course  
also technically work like a fully fleshed 3D game but limit the controls to a 2D plane.

Figure  4:  Left:  Donkey Kong Country  Returns  (2010),  right:  Klonoa:  Door to  Phantomile  
(1998)

Figure 3: X-Moto (2005) to the left and Limbo (2010) to the right
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enables to draw and erase free shapes in the game area. The game  PixelJunk Shooter (2009) 
features certain destructible regions in the landscape.

So, the main goal of this thesis is to offer an approach how to implement a 2D landscape based  
on polygons which is also completely changeable during the course of the game and in real-
time. This also includes a description of the basic operations on polygons like collision detec-
tion (intersection with a line), containment checks etc.

Changeable in this context means to be able to change the region enclosed by the polygons, 
similar to what is done in a pixel-based landscape: Replace portions of the landscape with a  
different material, remove them or add new portions of a material somewhere in the landscape.  
In a landscape based on polygons, these kind of operations are done with clipping operations. 
For the implementation of a clipping operation and the landscape consisting of polygons in 
general, some special requirements should be met:

First of all, as the operations on the landscape ought to run in real-time, the  performance is 
important. Checks and clipping operations on the landscape must be bounded in their execution 
time, so the same operation should not for example take ten times as long on one side of the 
landscape as on the other side of the landscape. Since the field of application is a very specific 
one in this case, the operations should be optimized for the typical operations in a game world: 
It must be considered that the clipping operations are not just performed once on a set of input  
polygons but repeatedly or even continuously throughout the course of the game at many differ-
ent locations in the landscape. Additionally, the data structure must still allow often-used checks 
like collision detection to be fast.

Because one must be prepared for continuous changes on the landscape, the clipping algorithm 
must be robust: The algorithm must always output polygons that it also accepts as input poly-
gons (which is not given for all implementations). Specifically, the algorithm needs to handle 
the limited precision of numbers in computers without  outputting invalid polygons at  some 
point.

Another issue in the context of games is  network synchronization. Because over the years, 
different  floating  point  representations  have  been used in  different  system architectures,  its 
usage might  become a problem when synchronized across  computers  with different  system 
architectures.

That is why the implementation should also be able to use only fixed point numbers for calcula-
tions. At the same time, this allows to define an upper limit for the detail of the polygons in 
the landscape. This is important because with every clipping operation on the landscape, it tends 
to become more and more detailed which conversely makes its access slower. As it is possible to 
set an upper limit for the detail of a tile-based landscape by defining the size of a tile in pixels,  
the same should be able to be done with a landscape based on polygons.

The rest of this thesis is structured as follows:

In chapter 2, the primitive operations on polygons which are essential for basic operations on a 
landscape that consists of polygons will be described in detail. However, the main focus of this  
thesis  lies  on  the  implementation  of  how to  make  changes  on  a  polygon-based  landscape,  
specifically,  how  to  perform clipping  operations  on  single  polygons.  This  is  described  in 
chapter 3.

Methods and data structures to make operations on the whole landscape rather than single poly-
gons perform in reasonable time are roughly described chapter  4. However, detailed descrip-
tions about the implementation of this would go beyond the scope of this work.

Finally, a conclusion is drawn in chapter 5 in which the pixel-based landscape is compared with 
the solution presented in this work.
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2 Polygon basics

2.1 Definition

A  polygon is  typically  defined  as  a  sequence  of 
vertices which are connected by straight line segments, 
the edges of the polygon. All edges taken together form 
the boundary of a polygon. The faces of a polygon are 
defined by the areas which are enclosed by the bound-
ary.

Figure  5 shows  an  example  of  a  simple  polygon. 
Simple polygons are polygons which are not self-inter-
secting.  That  is,  polygons  whose  boundary does  not 
intersect.  Simple  polygons  have  a  clearly  defined 
inside and outside because their boundary only defines 
one face.

A simple polygon can be either convex or concave. If 
the  internal  angle  between  each  two  successive  line 
segments of a polygon is less or equal than 180 degrees 
(is a convex angle), it is a convex polygon. Otherwise it 
is a concave polygon.

Simple polygons whose edges may intersect but not cross each other can be called self-touching 
or weakly simple polygons.5 Figure 6 depicts the difference between a non-simple and a weakly 
simple  polygon.  In all  other respects,  weakly simple polygons share the same properties as  
simple polygons. 

The algorithms presented in this work are able deal with arbitrary simple polygons (not weakly 
simple polygons). For convenience, simple polygons will just be called polygons here.

5 There are a couple of different definitions for “weakly simple polygons” in literature. That is because 
the term is often used to describe a type of polygon that is almost but not quite a “simple polygon”. In  
this work, the definition provided by D. W. Krumme et al. [K2] is used.

Figure  5: An example of a simple  
polygon

Figure 6: Both depicted polygons show self-intersections but only the edges  
of the left polygon cross each other. The right polygon is a weakly simple or  
self-touching polygon.
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2.2 Size and circumference

The area of a polygon is calculated by the Gaussian trapezoid formula:

2A = ∣∑i=0

n−1

( y i+ y(i+1) mod n)⋅(x i− x(i+1) mod n)∣
A is the area of the polygon. (xi, yi) are the coordinates of the vertex at index i. The first vertex is 
(x0,  y0).  If  the sum in above formula is not  reduced to an absolute value,  the result  of  this  
formula will be positive if the polygon is defined counter-clockwise and negative if the polygon 
is defined clockwise. So, the Gaussian trapezoid formula is an easy way to find out in which  
direction the polygon is defined as well.

The circumference is calculated by adding the distance between all successive vertices of the 
polygon.

2.3 Determining convexity

All interior angles of a convex polygon are less or equal 180°. So, given that the polygon is  
defined counter-clockwise, each vertex vi of the polygon has to be left  of the previous line 
spanned by vi-2 and vi-1. If any of the vertices do not fulfill this condition, the algorithm can 
terminate and return false. 

This check runs in O(n). n is the number of edges of the polygon. The pseudo-code in Figure 7 
returns true if the polygon is convex. 

for each vertex Vi in the polygon
  if Vi is right of the line spanned by Vi-2 and Vi-1

    return false
  endif
endfor
return true

Figure 7: Pseudo-code to determine convexity
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2.4 Intersection with a line

The intersection of a line and a polygon is a set of points and lines. The set may be empty (there  
is no intersection) or contain any number of points and lines.

As depicted in Figure  8, the intersection with the boundary and the intersection with the face 
must  be distinguished since it  is  something  completely different:  the  points  where the  line  
crosses the polygon boundary mark the start- end endpoints of the intersections with the poly-
gon face. For most operations, only the intersections of the boundary are of any interest; the 
intersection with the polygon face can be calculated from the polygon boundary intersection.

In the application of polygon-based landscapes, intersections with lines are performed for colli -
sion checks with objects. The line then stands for the path a moving object covered in a single  
time step. If this line intersects with a polygon, the objet collides with it at the intersection point.

The polygon boundary consists of a number of line segments. Every single one of those line  
segments needs to be checked for an intersection with the given line in order to determine all  
intersections. To avoid that the same two intersections are found twice, the line segments need 
to be treated as open to one end (that is, one end point is not included in it).

For a single polygon, this check runs in linear time O(n) while n is the number of edges of the  
polygon and thus intersection checks. See Figure 9 for the pseudo-code.

for each edge in the polygon
  if edge and line intersect
    if intersection is not at start-point of edge
      memorize intersection
    endif
  endif
endfor
return memorized intersections

Figure 9: Pseudo-code for the intersection check for any polygon

Figure  8: The difference between intersections of a line with the boundary of a  
polygon and the face of a polygon
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2.4.1 Optimization: Line intersects a convex polygon
The procedure is the same for all polygons. However, 
it is known that any line drawn through a convex poly-
gon can only share two intersections with the boundary 
of that polygon: one intersection where the line enters 
the polygon face and one where the line exits the poly-
gon face.

If the line does not cross the boundary of the polygon 
but only touches it, there is only one intersection. Note 
that if the intersection of the line and the polygon is a 
line itself,  several successive line intersections might 
be found by the algorithm. These however all lie on 
the same line. See Figure 10 for an illustration.

So if the polygon is a convex polygon, the algorithm 
can already terminate after either two point intersec-
tions or one set of successive line intersections have 
been found. This saves about fifty percent of all inter-
section checks that need to be made for lines that actu-
ally intersect with the polygon. 

2.4.2 Optimization: Intersection with a ray
In many applications such as collision detection, only the first intersection of a ray and a poly-
gon is of any interest. If it is known whether the starting point of the ray is inside or outside the 
polygon, the number of edges to be checked for an intersection with the ray can be reduced to 
about the half:

Back-face culling is a technique used in 3D computer graphics which excludes all  polygons 
from the rendering process whose faces do not  face towards the camera.  This is  done by a 
simple comparison between the viewing direction vector V of the camera and the normal vector  
N of the face:

V⋅N>0

If the scalar product of V and N is greater than zero,  the  counter-clockwise defined polygon 
faces away from the camera and thus will not be rendered (For polygons that are defined clock-
wise, when the scalar product is smaller than zero). The same technique can be used in this  
application: if the starting point of the ray is known to be outside the polygon, the back-facing 
edges can be left out of the intersection checks. However, if the starting point is inside the poly-
gon, the front-facing edges can be left out.

Figure  Error:  Reference  source  not  found 
shows an example of this technique:

The  intersection  between  the  ray  and  the 
edge  e1 is  not  checked  because  the  scalar 
product of  n1  and  r  is greater than zero, 
which  means  the  edge  is  back-facing.  All 
green edges in the image are back-facing and 
thus  are  not  checked for  intersections  with 
the ray.

Figure 10: The line l1 intersects the  
convex  polygon  p1 in  two  lines  i1 

and i2. Both lie on the same line.

Figure  11: Example of the back-face culling  
technique:  r  is the direction vector of the  
ray.  n0 And  n1  are the right-hand normal  
vectors of the edges e0  and e1 .
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When using the back-face culling technique on convex polygons,  the algorithm can already 
terminate when one intersection point has been found because the other intersection with the ray 
would be found on a back-facing edge.

It should be noted that to determine whether the starting point of the ray is inside or outside of 
the polygon is about as expensive as the line and polygon intersection check itself. That is why 
it is not expedient to do the point in polygon test here just to be able to discard about half of the  
intersection checks by using back-face culling. See the next section for details on the point in 
polygon check.

The function in pseudo code shown in Figure 12 returns true if the given edge may be culled:

2.5 Point in polygon check

For polygon-based landscapes, point-in-polygon checks are used for a couple of things. This  
includes checking whether an object is stuck in a solid polygon or finding out what material can  
be found at a certain location.

There are two common methods to test whether a point lies inside or outside of a simple poly-
gon. Both the winding-number algorithm and the ray-casting algorithm were already roughly 
described as early as 1974 by Sutherland et al. [S1]. Only the ray-casting algorithm and its 
special cases will now be described in detail.

In this algorithm, a ray is  shot  from the point into an 
arbitrary  direction.  Whether  the  point  lies  inside  or 
outside of the polygon is determined by how many times 
the  ray  crosses the  boundary  of  the  polygon.  If  the 
number of crossings is odd, the point lies inside of the 
polygon. If it is even, the point lies outside. The method 
is similar to the intersection check with lines, but here 
only the number of crossings is of interest, not the inter-
sections themselves.

The  ray can  be  shot  in  any direction.  However,  it  is 
easier to compute intersections with lines that are paral-
lel to one of the axes.

Figure  13: Point  p is  inside the  
polygon, q is outside and r is on  
the border

culling_check(edge,ray):
  scalar = direction vector of the edge * right-hand normal vector of the ray
  if starting point of the ray is outside the polygon
    if scalar > 0
      return true
    endif
  else
    if scalar < 0
      return true
    endif
  endif  
  return false
end

Figure 12: Pseudo-code for a back-/front-face culling check
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Three cases should be distinguished (see figure 13):

(a) The number of crossings is odd which means the point is inside the polygon.

(b) The number of crossings is even. The point is outside the polygon.

(c) The intersection of the ray and a polygon edge is the point itself. The point is on the 
border of the polygon

The border of the polygon is defined as still inside the polygon so case three is not required  
because it is covered by case one. However, in case three the algorithm can terminate without 
any further (intersection) checks.

See Figure 14 for the pseudo-code.

2.5.1 Special case: Ray hits vertex or intersects in a line
In this algorithm, a clear distinction has to be made between cross and intersect. Only if the ray 
crosses the boundary of the polygon, the intersection may be counted:

Only in the special case that the ray intersects with a vertex of the polygon or the intersection 
consists of a line, it may happen that the ray does not cross the boundary. Otherwise, an inter -
section is always a crossing.

Figure 15 depicts the possible cases:

The ray of point  a0 intersects with a vertex of the poly-
gon but does not cross its boundary. The intersection is 
disregarded. The same can be observed for a1. However, 
a1 is correctly identified as inside the polygon because 
the second intersection is a crossing.

Like  a0, the ray of point  b intersects with a vertex. But 
here, it crosses the polygon boundary.

The  first  intersection  of  the  ray  of  point  c is  a  line 
segment.  Because the ray enters into the polygon face 
and thus crosses the boundary at the end of the intersec-
tion line, the intersection counts as a crossing.

for each edge in the polygon
  if edge and ray intersect
    if intersection is at start-point of edge
      continue with next edge
    endif
    if the intersection point is the starting point of the ray
      return true
    endif
    if the intersection is a line or at a polygon vertex
      if crosses_boundary(ray,intersection)
        increment crossingCount
      endif
    else
      increment crossingCount
    endif
  endif
endfor
return true if crossingCount is odd, otherwise false

Figure 14: pseudo-code for the ray-casting algorithm

Figure  15: Intersections with the  
vertices of a polygon
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To determine whether a line crosses a boundary in one intersection or not, the following easy 
check has to be made:

A line splits a plane into two sides. If both the vertex of the polygon before and the vertex after  
the intersection lie on the same side of the line, the line does not cross the boundary. Otherwise, 
it crosses the boundary.

Note that this line intersection doesn't need to consist of only one line. There could be several 
successive line intersections before the ray actually crosses or leaves the boundary of the poly-
gon. Generally, successive line intersections which lie on the same line should be treated as one 
intersection in this case. Figure 16 shows the pseudo-code for this check.

2.5.2 Optimization: Convex polygons
The point-in-polygon check for convex polygons is much easier and faster: if the vertices of a  
convex polygon are defined in a counter-clockwise order, the point must be on the left side of all 
polygon edges to  be  inside the polygon.  If  the  point  is  on the right  side of  any edge,  the 
algorithm can terminate and it is outside of the polygon.

crosses_boundary(ray,intersection):
  A = previous vertex of the polygon which is not part of the intersection
  B = next vertex of the polygon which is not part of the intersection
  if A is left of the ray and B is right of the ray
    return true
  endif
  if B is left of the ray and A is right of the ray
    return true
  endif
  return false
end

Figure 16: pseudo-code for the ray-casting algorithm
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3 Clipping operations on polygons
Clipping operations (also called  Boolean operations) are binary operations on two polygons. 
These include union, difference, intersection and exclusion. The polygon on which the operation 
is performed is the subject polygon, the other is the clip polygon. See figure 17.

In this context, clipping operations are used to change the landscape.  If for example a round 
hole should be blasted into a specific spot in the landscape, a polygon in the shape of that hole is  
subtracted from the landscape at that spot. If a chunk of another material is inserted into the  
landscape, first the polygon which represents this chunk is subtracted from the landscape (to 
make a hole for itself to fit in) and then inserted into it.

3.1 Previous work

The clipping of polygons has been a basic problem in areas such as 3D computer graphics and 
computational geometry. Early algorithms were tailored to clip polygon faces with rectangular 
areas like the viewport boundaries or single lines. The clipping of polygons with the display 
area in computer graphics is a standard and fundamental task that is carried out in any applica-
tion that uses 3D graphics. The wide range of applications of 3D graphics explains the large 
amount of scientific papers that deal with this problem [L1, S2, F1, R1].

Later, various algorithms were developed that clip arbitrary planar polygons like concave poly-
gons, polygons with holes or non-simple polygons. The basic procedure of polygon clipping is  
similar for most of these algorithms:

First, the intersections of all edges of the two polygons are calculated and subdivided at the  
intersection points. Then, it is determined which edges are inside or outside the other polygon 
and the resulting polygon is constructed accordingly. Some algorithms do this in separate steps 
while others already construct the resulting polygons in the same loop as the intersections are  
calculated.

Algorithms  based  on  a  mathematical  model  of  simplicial  chains (simplex  theory)  were 
developed by Rivero and Feito [R2] and enhanced by Peng et al. [P1]. They accept simple poly-
gons without or with any number of holes.

Algorithms based on a scanbeam (also: sweep-line) were presented by Sechrest and Greenberg 
[S3], later by Vatti who developed an algorithm that worked for arbitrary polygons that may 
self-intersect  [V1].  The  algorithm of  Martínez  et  al.  [M1]  is  also  based  on  the  scanbeam 
paradigm but is faster than Vatti's, especially for polygons with a lot of edges. The scanbeam is 
used to find the intersections  between the two polygons more efficiently.  A more thorough 
description of this method is given in section  3.3.2 (Optimization: Using a scanbeam)  as this 
method  is  compatible  with  the  algorithm presented  in  this  thesis  and  other  edge  labeling 

Figure 17: The four clipping operations for the subject polygon A and clip polygon B.
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approaches. The algorithms based solely on a scanbeam derive the data needed to construct and 
return the resulting polygons directly during that operation.

An  Edge labeling approach has been introduced by Greiner and Hormann [G1], Schutte [S4] 
and Desmera [D1] independently.6 In this approach, the algorithm is split up into three steps. 
After the intersections between the two polygons have been found and inserted into both poly-
gons as vertices,  the edges of both polygons are labeled according to their  orientation with  
respect to the other polygon. In the third step, the resulting polygons are constructed on the  
basis of this data. So, the part of finding the intersections between the two polygons is separated 
from the logic of putting together the resulting polygons.

Subsequently, these algorithms will be analyzed in more detail because the algorithm for poly-
gon clipping presented in this thesis is also based on the edge labeling approach:

Greiner and Hormann's algorithm can handle self-intersecting polygons because it included a 
clear definition of which points are inside and which are outside the polygon. Their general  
concept of the labeling process is the following: The algorithm starts by determining if one 
vertex of the subject polygon is inside or outside the clip polygon. The following edges are  
labeled the same as their respective predecessors until an edge of the other polygon is crossed.  
Whenever this happens, the labeling of the following edges is switched: if the previous edges 
were labeled as outside, the next edges are labeled as inside and the other way round. When the 
starting vertex is reached, the labeling is complete. The same is done with the clip polygon.

However, this method assumes that no vertex of one polygon lies exactly on the boundary of the 
other polygon. This can hardly be assumed for the general case of arbitrary polygons. The solu-
tion Greiner and Hormann offered for this is to displace the affected vertex by a tiny distance to 
circumvent this special case. It is explained that if the chosen distance is smaller than one pixel  
on the screen, the difference will be too small for the eye to see. But this solution is not satis -
factory because it can't be assumed that there is no case where the displacement of one vertex 
does  not  lead  either  to  the  same situation  with  another  edge,  or  a  new intersection  of  the 
surrounding edges with edges of the other polygon. The problem becomes more obvious when 
working with integers instead of floating point numbers.

Furthermore, Greiner and Hormann's algorithm doesn't account for possible holes in resulting 
polygons, nor the possibility that the edges of the subject and clip polygon may intersect in 
lines.

The  edge  labeling  part  of  Schutte's  algorithm is  similar  to  the  one  presented  in  this  work. 
However, only the operations union and difference are described in their paper. Their algorithm 
only handles simple polygons but can be extended to accept self-intersecting polygons and poly-
gons with holes as input. Polygons with holes are first split up into several polygons by subtract-
ing the hole from the polygon. For self-intersecting polygons a similar technique is used.

6 It is to say that Greiner and Hormann didn't use the term edge labeling in their paper but ultimately 
their approach is an edge labeling approach according to the explanation in the text.
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3.2 General concept

Subsequently, another algorithm based on the  edge labeling approach will be described. It is 
able to handle all simple polygons and covers all four clipping operations:  union,  difference, 
exclusion and intersection.

To match the requirements for an implementation mentioned in the introduction, the algorithm 
is able to completely work in integer space. This both makes it possible to define an upper limit  
for the detail of the polygons as well as makes network synchronization easier. However, in 
integer space some special cases become more obvious and must be covered for mathematical  
robustness.
The algorithm only outputs polygons it itself accepts as input polygons because the algorithm is 
supposed to work repeatedly on the same set of polygons.

Roughly, the algorithm can be split up into 3 main steps:

1. Find and insert all intersections into both polygons. As a result of this step, all edges  
intersect only at their endpoints. Thus, all edges are now clearly situated either inside or  
outside of the other polygon.

2. Label each of the polygon edges of both polygons as either inside (inside the other poly-
gon), outside (outside the other polygon), shared or reverse-shared. Shared means that 
both polygons share this edge.  Reverse-shared edges are shared edges with opposite 
orientation.

3. Connect the edges according to their labels and the designated clipping operation. For  
difference (see figure  18): connect all outside and reverse-shared edges of the subject 
polygon with all inside edges of the clip polygon. For union, connect all outside and 
shared edges of the subject polygon with all outside edges of the clip polygon.

Figure 18: The three steps of the clipping operation “difference”



3.3  First step: Intersections 19

3.3 First step: Intersections

In the first step, all intersections are found by checking each edge of the subject polygon and  
each of the clip polygon for intersections. The calculated intersections are then inserted as extra  
vertices in both polygons (if they are not already in the polygon at this position) and memorized  
for the next step as shown in Figure 19. Because new vertices can be inserted at random posi-
tions in the polygon, the sequence of vertices should be available as a linked list rather than an 
array list (vector) during the clipping operation. The complexity to insert a new vertex at a given 
iterator is O(1) for linked lists as opposed to O(n) for array lists. More importantly, iterators to 
array lists  are  invalidated when a  new element  is  inserted.  As the intersections  need to  be 
memorized for the second and third step of the algorithm, an array list is not eligible for this  
algorithm.

The result of this step is that no two edges of the polygons may intersect at any other point than 
at its vertices. In other words: each edge of both polygons must be clearly classifiable as either 
outside, inside, or on the boundary of the other polygon. That is why the intersection points are 
inserted in both polygons.

For line intersections, both the start and end points have to be inserted into the polygons. The 
order in which the points are inserted is of importance here to not mess up the shape of the poly-
gon: if the intersection line goes into the same direction as intersecting polygon edge, the start  
point is inserted before the end point. Otherwise, if the line goes into the opposite direction, the 
end point is inserted before the start point. The scalar product of two vectors that go into the  
same direction is always positive. So, all that needs to be done to check this is to multiply the 
direction vector of the intersection line and the edge. The pseudo code can be seen in Figure 20.

for each edge Ai of subject polygon A
  for each edge Bi of clip polygon B
    if Ai and Bi intersect
      insert(intersection,Ai)
      insert(intersection,Bi)
      memorize all vertices in intersection and its positions in A and B
    endif
  endfor
endfor

Figure 19: First step of the polygon clipping algorithm

insert(intersection, edge):

  if intersection is a point
    if point is neither start nor end point of the edge
      insert point into polygon at edge
      check for new intersections and self-intersections at neighboring edges
    endif
  elseif intersection is a line with start point P and end point Q
    if line direction vector * direction vector of edge ≥ 0
      insert(P,edge)
      insert(Q,edge)
    else
      insert(Q,edge)
      insert(P,edge)
    endif
  endif

end

Figure 20: Insert an intersection into an edge
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In case no intersections have been found in this step, the polygons are either not intersecting at 
all or one polygon completely encloses the other (all points of polygon A is in polygon B or the  
other way round).

If the second applies, all edges of the smaller polygon can be labeled as inside and all edges of  
the bigger polygon as outside. The second step of this algorithm can be skipped in this case.

The  time  complexity  for  this  step  is  O(n²).  This  is  the  most  expensive  operation  in  this  
algorithm. In section  3.3.2, it  is explained how to exclude most edges from the intersection 
check using  scanbeams in order to make this step more efficient. Other than that, there is no 
way to reduce this complexity without using spatial data structures which make the exclusion of 
edges that do not intersect faster.  A solution with a geometric data structure is presented in  
chapter 4 (Spatial data structures and algorithms).

3.3.1 Special case: Additional intersections are created
The shape of the polygon is theoretically not altered by the insertion of the intersections since 
these points are already part of the boundary.  In reality, numbers in computers have limited 
precision. Thus, any insertion of a new vertex in a polygon may alter its shape.

A minimal  displacement  of  the  intersection  points  due  to  rounding  imprecision  leads  to  a 
slightly different shape of the polygon. This means, that at the edges around the newly inserted 
vertex, there might occur new intersections between the two polygons.

The data displayed in figure 21a and 21b is taken from an actual test of the implementation. 

Note that this special case can happen always when the intersection is not exactly located at one  
point.

Unfortunately, to be sure that all intersections are found, the four neighboring edges of the inser-
ted point (of both polygons) must each be checked for new intersections with the other polygon. 
If there are new intersections, these have to be inserted and checked for new intersections, too. 

This issue is the prime reason why the finding of the intersections need to be separated from the  
labeling and constructing of the resulting polygons.

Figure 21a: ab intersects with pq at a 
point close to b. The intersection point must  
be  inserted  in  both  polygons  between  p,q  
and a,b.

Figure  21b:  The  intersection  point  is  
inserted. The shape of both polygons change  
slightly and now the newly created edge x⃗q
intersects with an edge of the other polygon.
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Additionally, it must be noted that through the insertion of new vertices, the shape of the poly-
gons can be altered in a way that (one of) the polygons do not meet the constraints to fall into 
the category of simple polygons anymore. The data displayed in figure 22a and 22b is also taken 
from actual test data. After the intersection points have been inserted into both polygons, one  
edge of the extremely narrow section of polygon A slipped down past its own boundary which 
means that polygon A self-intersects, it has a section which is defined clockwise. 

It is not possible to prevent a polygon from deforming into a non-simple polygon at this point, 
but it is possible to detect if self-intersections occurred and split the original polygon up at these 
points. These have to be clipped separately in the rest of the clipping algorithm. In the above 
example, polygon A must be split up into two polygons at position (8,4).

The self-intersections are found the same way as the intersections between two polygons are  
found. Also, the same rules apply: the intersection points need to be inserted in the polygon if  
they do not exist yet and memorized thereafter in order to easily split them up after the first step 
of the clipping algorithm completed. If new points are inserted, again all neighboring edges 
need to be checked for new intersections.

See figure 23 for the pseudo-code to split up the polygon at its self-intersections.

So, the actual (worst-case) cost of the first step of the clipping algorithm adds up to n²+8⋅c⋅n  
intersection checks with n being the number of edges of the polygons and c the number of inter-
sections between the two. The factor is 8 because for each inserted intersection point that alters 
the shape of the polygons, all 4 neighboring edges need to be checked for new intersections as 
well as each the 2 neighboring edges of both polygons for self-intersections.

Figure  22a:  Two  polygons  are  
clipped.  This  figure  shows  the  
two  original  polygons,  the  
arrow shows the orientation of  
the edges in polygon A.

Figure  22b:  The  two  polygons  
from  figure  22a  after  the  
intersections have been added to  
both  polygons.  The  encircled  
vertices  are  the  newly  inserted  
vertices,  the  arrows  show  the  
orientation  of  the  edges  in  
polygon A.



3.3.1  Special case: Additional intersections are created 22

At the time of this writing, it is unknown whether there is a method that somehow circumvents 
this problem as this issue has not even been mentioned in past works. A reason for this might be  
that past works were based on floating point numbers. So when an intersection had been missed, 
the resulting error in the output usually happened at some place after the decimal point and thus 
was usually not visible (on the screen). Another reason might be that past clipping algorithms 
were not tested to work with polygons that were defined at the highest precision available, e.g. a  
narrow and long polygon with a width of exactly one unit or even less (as shown in figure 22).

With random test data, the insertion of new vertices and the resulting change of the polygon's  
shape rarely leads to new intersections to occur between the two polygons. However, it happens 
quite often if the boundaries of the polygons are represented near the maximum level of detail  
available. Because in each clipping operation, the intersections are inserted in both polygons as  
new vertices, the polygons tend to become more and more detailed with every clipping opera-
tion performed on them. As polygons can be clipped continuously in a game with a changeable  
landscape, it must be assumed that many polygons might be represented near the maximum 
level of detail available.

This does not change the fact that through such errors introduced in this step, a polygon can 
result that is not a simple polygon anymore or the algorithm fails completely due to erroneous  
intermediate results.

It is not trivial to keep track of the intersections that have to be memorized in this case because  
when the shape of the polygon is changed, not only new intersections can arise, others might 
also be transformed into line intersections or previously found intersections are found again. 
Because of this, memorized vertices that are part of an intersection should be stored in a data 
structure that stores only unique values like a set or a map.

separate(polygon P):
  
  Start = any vertex of the self-intersections
  L = list of separated polygons
  S = stack of start vertices
  S.push(Start)
  
  while Start is not reached again, walk along the boundary of P
    if another self-intersection I is found

      Begin = the vertex at the top of stack S
      Current = the current vertex
    
      if I is at the same point as P
        add the vertices from Begin to Current as a new polygon to L
        S.pop
        if S is empty now
          Start = Current
          S.push(Start)
        endif
      else
        S.push(Current)
      endif

    endif
  endwhile
  
  return L
end

Figure 23: Split up the polygon into several polygons at the point(s) at which it self-intersects
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3.3.2 Optimization: Using a scanbeam
With this algorithm, the intersection checks are only made between edges that are in an active  
stripe: the scanbeam. The scanbeam can either be vertical or horizontal and moves from one  
side of the polygon to the other; for example from the top (the topmost vertex of the polygons) 
to the bottom (the bottommost vertex of the polygons). During the process, a list of active edges 
for each polygon is kept.  Intersection checks are only made against edges in this list  which 
limits the number of necessary intersection checks substantially. For a horizontal scanbeam that  
goes from the top to the bottom, the algorithm can be roughly described like this:

Before the algorithm starts, all vertices of both polygons must be sorted by their vertical posi-
tion. After that, each vertex of both polygons is processed in the order they appear in the sorted 
list: If the current vertex is the upper endpoint of an edge, that edge is put into the list of active  
edges. On insertion, it is checked whether the newly inserted edge intersects with any edges of  
the other polygon already in the list. If it does, the intersection point is calculated and inserted 
into both polygons. The sorted list of vertices needs to be updated to include the newly inserted 
vertices. Since the two active edges that intersected do not exist in the two polygons anymore, 
they need to be altered to have their lower endpoint on the newly inserted vertex. If the current 
vertex is the lower endpoint of an edge, that edge is removed from the list of active edges. 

Since vertices in polygons are adjacent to two other vertices, vertices can be the upper endpoint  
of  one  edge  and the lower  endpoint  of  another,  the  upper  endpoint  of  two edges (like  the 
topmost vertex) or the lower endpoint of two edges (like the bottommost vertex).

To efficiently implement this, the vertices of the polygons and the active edges need to be able 
to link to each other so that it is easy to identify the associated active edges of one vertex.

Figure 24 shows the generic scanbeam algorithm in action with two example polygons. As illus-
trated by the example, the algorithm can make the intersection check between the two polygons 
much faster because some edges do not even have to be checked for any intersections; others  
only check against  a  few edges  of  the  other  polygon.  However,  this  optional  optimization 
requires some additional implementation effort as well as a change to the data structure of the  
polygons. Also, the special case described in section 3.3.1 has to be accounted for in the scan-
beam algorithm, too.

For the average case, the time complexity of a polygon intersection using this technique is the 
time complexity of the sort operation before using the scanbeam algorithm. To sort a list with 
quicksort has an average time complexity of O(n log n), with n being the number of vertices.
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The bold lines in the figure  24 mark the active edges. The numbers at the vertices show their 
order in the list sorted by their vertical position. The first vertex in this list will be called p1, the 
second p2 and so forth.

(a) Before the algorithm can begin, all vertices of both polygons must be sorted by their  
vertical position in a list.

(b) The algorithm starts at the first vertex. Its associated edges are added to a list of active  
edges. Since there are no active edges of the other polygon, no intersection check is  
made.

(c) The algorithm continues with the second vertex which is the lower endpoint of the edge 
p1 p2 . The edge is removed from the list of active edges. The second vertex is also the 

upper endpoint of p2 p9  which is then added to the list of active edges.

(d) The third vertex is reached. It is the upper endpoint of two edges, both are added to the 
list  of  active edges one after another.  Both added edges are checked with all  active 
edges of the other polygon for intersections. p3 p4  intersects with p1 p5 .

(e) The vertices at the intersection point are inserted normally into both polygons and then 
inserted into the sorted list of vertices at the adequate position. After that, the old edges  
are altered to have the newly inserted vertex as their endpoint. The vertices at the fourth  
point are reached. The just altered edges are removed and the other associated edges are 
added as active edges and each checked for intersections with the other polygon.

(f) The fifth vertex is reached. It is the lower endpoint of p4 p5  and the upper endpoint of 
p5 p13 .  p4 p5  is removed and  p5 p13  is added as an active vertex. The algorithm 

continues with the sixth vertex...

Figure 24: The first few steps of the scanbeam algorithm
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3.4 Second step: Labeling

There are four possibilities how a polygon 
edge can be positioned with respect  to the 
other  polygon:  it  can  be  an  inside,  an 
outside,  a  reverse-shared or a  shared edge. 
All possibilities are depicted in Figure 25.

Shared  and  reverse-shared  polygons  are 
special  cases  which  normally  appear  very 
rarely  with  arbitrary  polygons  when  two 
polygon edges intersect in a line.

Schutte [S4, p.4] mentioned that the obvious 
(naive) method to determine how each edge 
is located is to check whether the midpoint 
of  the  edge  is  inside  or  outside  the  other 
polygon.

However, as previous works already pointed out, one point-in-polygon check for concave poly-
gons results in n intersection checks (n is the number of edges) with the ray-casting algorithm. 
Thus, labeling all edges of both polygons would require 2n² intersection checks.

Apart from the performance issue, the method returns incorrect results if any edge is too short: 
while it is possible to find a midpoint that is located between any two points in ℝ2  in mathem-
atics,  the numbers in computers have a limited precision. This is particularly obvious when 
using integers. In integer space, it is impossible to get the midpoint of a line with the length of 
one unit:

Figure 26a and 26b show an example for these erroneous results with two polygons in integer 
space. The same problem exists of course for floating point numbers but only after the decimal  
point. 

The edge at (4,2),(3,3) of polygon B should be labeled as outside as well as the neighboring 
edges of polygon A marked in bold. However, in the example the edges are labeled as inside the  
other polygon. This is because when the midpoint of this edge is calculated, the result is roun-
ded and then happens to be one of its endpoints. Both endpoints touch polygon A, thus are iden-
tified as inside polygon A by the point-in-polygon algorithm. This is correct for the endpoints  
but not for the midpoint.

In some cases this can lead to an invalid output (the resulting edges do not form a closed poly-
gon), in other cases the output is just erroneous.

The errors produced by incorrect labeling are usually not much bigger than the rounding impre-
cision itself as shown in figure  26b. However, it can't be excluded that this error results in a 
completely scrambled output: for example, if the erroneous section was the entry point to a 
larger gap in the polygon. 

Figure 25: Two labeled polygons
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As Schutte pointed out himself, for these reasons, the point-in-polygon check is rather unfit to 
label the edges of the polygons.The algorithm that is presented in the following section works  
without any point-in-polygon checks. Like Schutte's algorithm it works in integer space, but is 
marginally simpler than his solution and works with arbitrary simple polygons. It can be under-
stood as a combination of Greiner and Hormann's chalk cart metaphor [G1, p. 4] and a simpli-
fied version of Schutte's  label_angle algorithm [S4, p. 5] which determines if the edges at an 
intersection cross or just touch each other at the intersection point. The time complexity is O(n).  
n is the number of edges of both polygons.

3.4.1 Labeling process
The labeling process is started at one intersection point p of polygon A and B. For its successive 
edge eA it is determined whether it is inside or outside the other polygon and labeled accord-
ingly. After this has been done, the following edges of polygon A are labeled the same as eA until 
the next intersection q is reached.

For q and its following intersection points, the process is repeated until the first intersection p is 
reached again. All edges of A are labeled at this point; figure 27 demonstrates this process. The 
same is done for polygon B.

While it suggests itself to just switch the labeling around after each intersection point (label the  
successive edges as outside if the ones before were labeled as inside and the other way round) 
like it has been described in Greiner and Hormann's approach, this will produce incorrect results 
whenever the edges of the two polygons do not cross but only touch each other at the intersec -
tion. This is why a new check is required at every intersection.

Also note that this method assumes that the positions at which the two polygons intersect are 
known. Because of this, the positions have to be memorized in step one.

Figure  26a:  Erroneous  labeling  of  two  
polygons  in  integer  space.  The  labels  
around the hole between polygon A and B  
are wrong.

Figure 26b: The difference of B and A using  
the erroneous labels. The red section to the  
bottom is the part which shouldn't be part of  
the polygon.
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(1) The process starts at a random intersection p. First of all, the orientation of the success-
ive edge of polygon A is determined and labeled accordingly.

(2) Then, all successive edges of polygon A are labeled the same until the next intersection 
q is reached.

(3) The process begins anew: the successive edge of q is labeled according to its orientation 
and the successive edges are labeled the same (which are none in this case) until a next  
intersection r is reached.

(4) The same is done for intersection r. The labeling is done when the first intersection p 
has been reached again. 

Figure 27: The labeling process for polygon A



3.4.2  Determine status of edges at intersections 28

3.4.2 Determine status of edges at intersections
To determine the status (inside or outside the other polygon) of an edge at an intersection point, 
it simply has to be checked on which side of the other polygon's edge it is located.

After the first step, it is guaranteed that the edges of the two polygons can intersect each other  
only at its start- or endpoints.  The edges can be clearly labeled as inside, outside or on the  
border of the other polygon. This also means that whether an edge adjacent to an intersection is  
inside or outside the other polygon is only dependent on the two edges of the other polygon that  
are also adjacent to the same point. Since the polygons are defined counter-clockwise, the left  
side of these two edges is defined as inside the polygon while the other side is outside of the  
polygon.

Figure 28a illustrates this. It also illustrates that the convex and the concave case must be distin-
guished. For b0 or b1 (and thus eb0 and eb1) to be inside the polygon A, it must be either on the 
left side of ea0 or on the left side of ea1 because those two edges are concave. If the two edges are 
convex, like in polygon B, the point for which its containment in that polygon is checked, must 
be on the left side of eb0 and eb1.

The check on which side of a line a point  px is situated is trivial: if the scalar product of the 
line's normal vector and the vector (px minus the line's start point) is positive, px is located on the 
right side of the line. If it is negative, it is on the left side and if it is zero, it is on the line. 

Line intersections are not treated any different than point intersections: For determining how ea0 

is situated, only the adjacent edges are being looked at, namely eb1 and e. See Figure  28b for 
reference. This is why it is enough to memorize only the vertices that are part of intersections in  
the first step of the algorithm, not the (line) intersections themselves. The two endpoints of the  
intersection line e in figure 28b were memorized separately. 

To for example find out if the edge ea1 of figure 28a is on the border of polygon B, as it is the 
case for line intersections, the following simple check can be made: If a1 is on the same spot as 
the first point of eb0, then the edge is reverse-shared. If a1 is on the same spot as the second point 
of eb1, it is a shared edge.

Figure 28a: The left side of the edges around  
the  intersection  point  p  is  inside  their  
polygon.  The arrows on the lines  show the  
orientation of the edges.

Figure 28b: A line intersection
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3.4.3 Implementation and data structure
In step one, it was mentioned that the intersections need to be memorized for step two. They 
should be memorized in a way that it is fast and easy to:

(1) access the edges and points around each intersection point / line

(2) access the corresponding intersection of the other polygon

(3) access the next intersection in one polygon

The simple data structure poly_vertex_link can be used to meet these requirements. It links to 
two vertices of the subject and clip polygon that are at the same spot (see figure 29). Because of 
the special case described in section 3.3.1, the poly_vertex_links should be kept in a set or map. 
Additionally, each vertex which is part of an intersection with the other polygon links back to  
the corresponding poly_vertex_link.

Figure 30 shows the algorithm for the second step in pseudo-code. Figure 31 shows the method 
for determining the status at an intersection.

label(polygon A, polygon B, set of poly_vertex_links Links):
  for each poly_vertex_link I in Links
    edge_label = successive_edge_status(I,A,B)
    for each edge e of polygon A between I and I+1
      label e like edge_label
    endfor
  endfor
end

Figure 30: Labeling process for the polygon A. The process is the same for the other polygon.

successive_edge_status(poly_vertex_link I, polygon A, polygon B):
  e = edge after I in A
  a = first vertex of e (= point of intersection)
  b = second vertex of e 

  e1 = edge before I in B
  e2 = edge after I in B
 
  label = “outside”

  if a == first vertex of e1
    label = “reverse-shared”
  else if a == second vertex of e2
    label = “shared”
  else if e1 and e2 are concave
    if b is left of e1 or e2
      label = “inside”
    endif
  else
    if b is left of e1 and e2
      label = “inside”
    endif
  endif

  return label
end

Figure 31: Function for determining the status of the successive edge at an intersection

struct poly_vertex_link:
  iterator to the vertex at the intersection point in polygon A
  iterator to the vertex at the intersection point in polygon B
end

Figure 29: poly_vertex_link data structure
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3.5 Third step: Connect edges

In the third step, the tagged edges are connected to form the new polygon(s). Which edges are  
used and which are discarded is dependent on the clipping operation that is performed. Used 
are:

for union outside edges of both polygons, shared edges of the subject polygon

for difference outside and reverse-shared edges of the subject polygon, inside edges of the 

clip polygon in reverse direction

for intersection inside edges of both polygons, shared edges of the subject polygon

for exclusion outside edges of both polygons,  inside edges of both polygons in reverse 

direction

The time complexity of this step is O(n). n is the number of edges of both polygons.

3.5.1 Basic procedure
Starting at any intersection, the tags of the four neighboring edges are looked at. Dependent on 
which clipping operation is performed, an adequate edge is selected and added to the resulting 
polygon. If there are several edges at the intersection which are tagged adequately, the algorithm 
selects the one which takes the sharpest turn left (see next section). The successive edges are  
then followed and also added to the resulting polygon until the next intersection is reached. At  
that intersection, the algorithm again determines which path to follow. This is repeated until the 
edge  with  which  the  algorithm  started  is  reached.  At  this  point,  the  resulting  polygon  is 
completed.

However, there can be several resulting polygons, so if there are intersections left that have not 
been visited yet, another resulting polygon has to be started and the whole process is repeated  
until  that polygon is completed, too. If there are still intersections left  which have not been 
reached, the process is repeated.

The result of this final step can be any number of simple polygons.

In the below example (figure 32a-32d), the clip polygon B is subtracted from the subject poly-
gon A (difference operation). Each on the left side of the figures, the subject and clip polygons 
are shown. On the right side, the resulting polygons are shown. Since it is obvious in this case, 
the edges are not specially marked as inside or outside the other polygon.
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Figure 32a: The procedure starts at an intersection and follows the polygon border of  
A which is outside of the polygon B to the next intersection point. The edges on the  
way to that point are added to the resulting polygon (right side).

Figure 32b: On the next intersection, the border of polygon B is followed in reverse 
(clockwise)  direction  because  it  is  inside polygon  A  and  added  to  the  resulting  
polygon. The next intersection is reached and one resulting polygon is complete.

Figure 32c: Two intersections have not been reached yet. That is why the procedure  
starts anew at another intersection. A new resulting polygon is created and an edge is  
added to it.

Figure 32d: Another intersection is reached which is the intersection with which the  
second resulting polygon has been started. It is completed and no intersections are left  
that have not been reached. The process is done.
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3.5.2 Left hand rule
Normally,  at  one intersection,  there  is  only exactly one path to progress  along the polygon 
border – the other surrounding edges are out of question because they are tagged differently.  
However, as also mentioned by Schutte [S4, p.6], there are exceptions. The best example is any 
exclusion operation (XOR). In an exclusion, both inside and outside edges of both polygons are 
used to  construct  the  resulting  polygons.  At  every intersection,  there  are  two paths  for  the 
procedure to choose. Figure 33 illustrates this:

When coming from edge pq , the resulting polygon could either be continued to be constructed 
by choosing to proceed with the left edge or with the right edge that face away from q. The rule 
here is to always choose the edge which takes the sharpest turn left (seen from the edge pq , in 
this case) and thus make the resulting polygon as small as possible. If the direction is chosen 
arbitrarily, the resulting polygon could intersect itself at one of its vertices and thus would not 
be a simple polygon anymore. In some cases, it could even lead to erroneous results.

Note that there are intersections which can be gone through twice (all in the above example). So  
if  a resulting polygon is completed,  that  intersection can still  be used to construct  the next  
resulting polygon. So, an intersection should not be marked as visited until all possible paths 
away from the intersection have been walked through by the construction algorithm.

Figure  33:  Exclude operation.  Left  side:  subject  and clip  polygon,  
right side: resulting polygons with arrows to mark in which direction  
the edges are defined.
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3.6 Dealing with holes in polygons

During  all  clipping  operations  but  intersection,  there 
can arise holes in the resulting polygon(s).  If the clip-
ping algorithm outputs polygons that it cannot handle 
as input,  the set of polygons it  accepts would not  be 
closed under the clipping operation. This is fatal if the 
clipping operation must  be designed to be used over 
and over again on the same set of polygons – as it is the 
case in the application described in the introduction.

A hole  for  example  arises  in  difference or  exclusion 
clipping operations when a small polygon is subtracted 
from a big polygon that completely surrounds the small 
polygon without intersecting its border. This is already 
detected during the first  step of  the  algorithm.  If  the 
two  polygons  in  figure  33 were  to  be  clipped  with 
union, it would also result in a polygon with a hole.

Clearly,  a polygon with a hole is not a simple polygon  anymore, let  alone  one polygon. So 
either,  the  definition  of  what  kind  of  polygons  are  accepted  and outputted  by the  clipping 
algorithm must be changed, or the polygon with a hole must somehow be transformed into a 
simple polygon.

Whether a polygon is defined clockwise and thus is a hole can be detected by calculating the 
size of the polygon. If it is negative, it is a hole. Note that during one clipping operation, several  
holes can arise.

There are three approaches to deal with holes in polygons:

3.6.1 Negative sub-polygons
The first is to let every polygon define any number of 
holes inside itself. These holes would be represented by 
“negative” polygons which are defined in reverse (clock-
wise) order. See figure 35 for an example. This seems to 
be a swift solution because clockwise defined polygons 
are  what  the  clipping operation outputs  as  holes.  This 
approach is  used by Peng et  al.  [P1]:  they distinguish 
between the counter-clockwise defined outer contour and 
the clockwise defined inner contours of one polygon.

However,  this  approach  has  the  big  disadvantage  that 
these holes need to be accounted for not just in the clip-
ping operation but  in  every single  algorithm regarding 
the polygon because the holes also define the polygon's 
shape. While this doesn't necessarily make things slower, 
it just adds a lot of unnecessary complexity to the imple-
mentation (of any polygon-related algorithm).

Additionally, from the practical point of view, it is difficult to depict the polygon face (not the  
border, though) on the screen. So, the polygons would probably end up being split into simple 
polygons for the display operation anyway.

Figure  35: The arrows depict in  
which  direction  the  polygon  is  
defined.  Clockwise  defined  
polygons have a negative size.

Figure  34:  A  polygon  with  two  
holes.
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3.6.2 Weakly simple polygons with “pipes”
The  second  approach  is  the  one  that  was  originally 
conceived for that problem in this work: if all algorithms 
are designed to work not only with simple polygons but 
with weakly simple polygons, holes can be connected to 
the outer border of the polygon by a “pipe”: two edges 
on the same line with opposite directions (see figure 36). 
The depicted polygon does not qualify as a simple poly-
gon anymore because its boundary touches itself. It then 
is a weakly simple polygon (see section 2.1).

A similar solution was also used by Sechrest and Green-
berg [S3, p. 22] in their algorithm.

All algorithms presented in this work except for the clip-
ping  operations  work  with  weakly  simple  polygons 
without any modifications. However, as it turned out, it 
added a  lot  of  unnecessary complexity to  the  clipping 
algorithm  for  being  able  to  claim  it  can  handle  any 
weakly simple  polygon:  any point  of  a  weakly simple 
polygon can be part of any number of intersections  with 
itself  (touching,  not  crossing).  To  account  for  this  in 
every step of the algorithm makes the algorithm a lot more complicated.

On the other hand, the trick with the pipe is not such a swift solution after all because it has to 
be determined first where to put it. The topology of the polygon does not always allow to just  
put two lines between the first vertex of the outer polygon border and the first vertex of the hole. 
Also, in most cases, new vertices have to be inserted into the polygon which could cause the  
polygon to change its shape in a way that self-intersections may arise (see section 3.3.1).

However, the most significant problem with this representa-
tion is that the method to determine the status of an edge at 
an intersection during the clipping operation presented in 
section 3.4.2 can fail for polygons with a pipe. See figure 37 
for an example:

Polygon  B intersects  polygon  A which  has  a  hole  that  is 
connected to the outer border through a pipe. At the inter-
section point p, it is not possible to determine the status of 
the successive edge e in polygon B because the edge is both 
left of two edges (thus, inside) and right of two edges (thus, 
outside)  around  the  intersection  point  of  polygon  A.  To 
simply tag the successive edge  e the same as the previous 
edge  in  polygon  B  works in  this  example  but  fails  if  all 
intersections between polygon  B and polygon  A are on the 
pipe. This case can not be excluded.

Because any weakly simple polygon can also be represented by several simple polygons, this  
approach turned out to be too complex while offering no advantages over the third approach:

Figure  36:  The  holes  are 
connected  to  the  outer  border  
through pipes.  The width of  the  
pipes  in  this  illustration  are  
magnified  to  depict  their  
functionality.  In  reality,  there  is  
no space between the two edges  
that form the pipe.

Figure  37:  Two  polygons  
intersect.  One of them has a  
hole  that  is  connected  to  its  
outer border through a pipe.
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3.6.3 Splitting into simple polygons
In this approach, the polygon is split into two (or more) 
polygons for each hole there is.  In which direction the 
cuts are made, does not matter. Also the positions of the 
cuts do not matter as long as they go anywhere through 
their polygon face. See figure  38 for an example. This 
approach is also used in Schutte's [S4, p.8] algorithm.

The process is the following: for every hole there is, the 
enclosing polygon (without the holes) is split into two. 
The cuts are made where the holes are located. Then, all 
holes are redefined to be defined counter-clockwise. The 
interim result  is a set of adjacent polygons without the 
holes and a set of (positive) holes. After that, each hole is 
subtracted from each of the polygons (difference clipping 
operation).

Splitting a polygon into two is similar to a clipping oper-
ation but with the split line treated as a simple path (a simple polygon where the first and last  
vertex is not connected): The intersections of the polygon and the line are first calculated and 
memorized. Then, the new polygons are constructed along the outside edges of the polygon and 
the inside segments of the line. However, the split line needs to be handled differently in the 
second step of the clipping algorithm (edge labeling) since it doesn't define the area that is on its  
left side to be inside. Also, during the third step its segments may be used in both directions to 
create the resulting polygons as opposed to the edges of the polygon. 

An easier but slower implementation is to create two split polygons that completely enclose the 
subject polygon from the split line. These two split polygons are then clipped with the subject 
polygon, using the intersection operation. See figure 39 for an illustration.

Splitting  a  polygon  into  two  has  a  time 
complexity  of  O(n):  For  a  normal  clipping 
operation  without  the  optimization  using  a 
scanbeam,  n⋅m  intersection checks have to 
be made (which is the most expensive opera-
tion  in  the  algorithm).  n is  the  number  of 
edges in the subject polygon, m is the number 
of  edges  in  the  clip  polygon.  Since  the 
number  of  edges  of  the  clip  polygon(s)  is 
constant in both implementations mentioned, 
the  time  complexity  only  depends  on  the 
subject polygon.

Figure  38:  Again,  the  spaces  
between  the  three  polygons  are  
magnified to show that there are  
three  polygons  now.  In  reality,  
there is no space between them.

Figure  39:  (a)  The  line  along  which  the  
subject  polygon  should  be  split.  (b)  Two  
polygons  that  enclose  the  subject  polygon  
run along the split line.
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4 Spatial data structures and algorithms
In the previous two chapters it was shown that the performance of any operation or check on a  
polygon is  solely dependent on the number of edges – neither its length nor its overall size. 
Also, the polygon clipping is the most expensive operation as it runs in quadratic time (without  
the optimization using a scanbeam) while all other checks run in linear time.

Now, for the application of a polygon-based landscape, not single polygons or a set of two poly-
gons are being dealt with but with a landscape that consists of a large number of polygons. For 
example, if a point-in-polygon check is performed on the landscape, one does not want to know 
whether the point is in one specific polygon; one wants to know in which of the possibly thou-
sands of polygons it is in (if it is in any). However, simply performing the point-in-polygon 
check for every polygon there is, is highly inefficient. The same applies to intersection checks 
with rays and for clipping operations.

So the goal of the spatial data structure in which the polygons are stored must be to efficiently 
exclude polygons that are out of range of the point, line or polygon for which a check or opera-
tion is made. Also, since the performance of an operation is solely dependent on the number of  
edges, single polygons should be kept small (in number of edges, not necessarily in size) and 
compact. It is also desirable that operations and checks on polygons take about the same time 
anywhere on the landscape in order to maintain an even processor load during runtime.

Algorithms for the polygon clipping presented in the previous section have been optimized to be  
used one-time on a set of input polygons. The output polygons were normally not used as input 
for further clipping operations. Specifically, the time tinit needed to process the data before the 
algorithm and the time  talgo to actually perform operations on the polygon(s)  have not  been 
separated because it has been assumed that the algorithms are only applied once on the same 
polygons anyway. However, for the application in games, the initial  loading time is far less 
important than the performance at runtime. So, if any calculations can be done initially (before 
the actual operations take place), this will result in a speed gain every time an operation on the  
landscape is performed.

One example for work that can be done at loading time is to sort the vertices of each polygon if 
the scanbeam algorithm is used. This is otherwise done directly before the clipping operation. If  
the vertices of each polygon are sorted initially, the sorted lists of the subject and clip polygon 
just need to be merged before the actual clip operation. Merging two such sorted lists only takes  
linear time. If a sorted list of vertices is already available, the scanbeam technique can also be 
used in the point-in-polygon check, given that the ray cast (see section  3.3.2) is chosen to be 
orthogonal to the scanbeam.

Much research has been done on the field of spatial  data structures and algorithms as they 
proved indispensable for the management of large amounts of data in fields such as database 
management systems, computer graphics, computational geometry and geographic information 
systems. 

Due to the magnitude of this field of research, only an overview over the data structures that are  
relevant for this application can be given in this work. Specifically, the implementation and its  
affiliated issues and optimizations will not be discussed in detail.

A more in-depth description and comparison over the different spatial data structures with a  
focus on hierarchical representations has been given by Samet [S5,  S6] as well as Gaede and 
Günther [G2]. 
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4.1 Bounding box

A simple and common way to quickly determine if a given point, polygon or line is outside 
another polygon is to use a bounding box. Sutherland et al. have described this method as the 
minimax test [S1, p. 12-13] which quickly rejects polygon faces that do not overlap each other.

The bounding box of a given polygon is the 
smallest rectangle parallel to the axes that can 
be  drawn  around  it.  See  figure  40 for  an 
example. The rectangle can be constructed by 
choosing  the  x-coordinate  of  the  leftmost 
vertex as the left border, the x-coordinate of 
the rightmost vertex as the right border, the 
y-coordinate  of  the  topmost  vertex  as  the 
upper border and y-coordinate of the bottom-
most vertex as the lower border of the rect-
angle.

Since a rectangle has a much simpler shape 
than a (simple) polygon,  it  is  faster  to first 
check if the given point is inside the bound-
ing box (for a point-in-polygon check), the given line intersects the bounding box (for an inter -
section with a line) or the bounding box of the given polygon overlaps with this bounding box 
(for a clipping operation) before proceeding with the algorithm.

The more box-shaped a polygon, the more time is saved by using this technique. So if a polygon 
is spread out very far, the bounding box is less effective. However, it is possible to actively 
modify a polygon:

4.2 Splitting up a polygon

A polygon is a boundary-based representation of a region. If the boundary of a polygon is only 
used to define the region it encloses, this region can also be represented by any number of smal -
ler polygons, as depicted in figure 41.

Thus, if a given polygon spreads out too far or grows too big (as in number of edges), it can  
always be split up into several smaller polygons. This does not reduce the total number of edges  
but still makes operations on that region faster: the bounding boxes more closely resemble the 
actual shape of the region enclosed by the polygons, therefore more space can be disregarded as 
outside the region by looking at the bounding boxes. Additionally, operations that only affect 
parts of the region enclosed by the polygon have to work with fewer edges. 

An example: To figure out whether the points p and q in figure 41 (a) lie inside or outside the 
polygon A, a full point-in-polygon check has to be made for both. In 41 (b), the point p can be 
discarded (as outside the region) after it has been determined that it is not in any of the bound-
ing boxes of the polygons in B. For point q, an actual point-in-polygon check (after checking all 
bounding boxes of B) is only made for polygon f which consists of much fewer edges than poly-
gon A.

Figure  40:  A  few  polygons  with  their  
bounding boxes (in dashed lines)
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Since the bounding box is an axis-aligned rectangle, it makes sense to make the cuts which split 
the polygon A into multiple polygons along the axes. Apart from that, it can also make sense to  
systematically split up the simple polygons into convex polygons. As described in the sections  
2.4.1 and 2.5.2, both the point-in-polygon check and the intersection check with a line is faster 
with convex polygons.

The process of splitting up polygons is the same as described in section 3.6.3.

Of  course,  the  smaller  the  pieces  into  which  the  polygons  are  cut,  the  more  polygons  are 
created. If there are many small polygons instead of few big polygons in the landscape, the main  
goal in order to increase performance shifts from optimizing operations on single polygons to 
optimizing the traversal through the bounding boxes of polygons.

4.3 Scanbeam algorithm

As described by Hsiao and Tsai [H1], the scanbeam (or: plane-sweep) paradigm can be used on 
the level of sets of polygons, too. The algorithm works similar as described in section  3.3.2, 
only that  instead  of  the  edges  of  a  polygon,  the  bounding boxes  of  a  set  of  polygons  are 
traversed: Given that the scanbeam moves vertically from top to bottom, the upper and lower 
edges of all bounding boxes must be sorted by their y-coordinates first. During the algorithm a 
bounding box is  added to the  list  of  active rectangles  when its  upper  edge is  reached and  
removed again when its lower edge is reached. If new polygons appear during the operation (for 
example if a polygon has been clipped), the list of sorted edges needs to be updated.

Hsiao and Tsai added that for most practical problems the plane-sweep algorithm alone is not  
efficient enough and should be used in conjunction with a spatial data structure. The reason is  
that the algorithm needs O(n log n) time to complete, where n is the number of polygons. Even 
if the upper and lower edges of all bounding boxes were already assumed to be pre-sorted, the 
algorithm would still have a time complexity that is linear to n, the number of polygons, since 
all polygons need to be traversed for any operation. This does not scale well.

Additionally,  it  must  be  assumed  that  the  number  of  polygons  in  the  landscape  changes 
constantly  during  runtime:  new  polygons  are  added,  some  others  are  clipped  and  others 
removed. Any data structure that uses the scanbeam algorithm on this level needs to re-sort the 
list of bounding boxes on any of these events.

Figure  41:  Polygon  A  and  the  set  of  polygons  B=  
{a,b,c,d,e,f,g,h} are both representations of the same region.  
The bounding boxes are shown as dashed lines. Also depicted  
are the points p and q.
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4.4 Grid

A simple and efficient solution is to arrange the polygons in a uniform grid. Each cell in the grid  
contains a set of links to polygons that intersect with it. This set can also be empty if there is no 
polygon in the grid cell. If a polygon changes its shape due to a clipping operation or is removed 
altogether the links to that polygon need to be updated in the data structure. To efficiently imple-
ment this, each polygon also needs to link back to any grid cells it is linked from.

If the grid is implemented as an array, the access to one cell has an unbeatable time complexity  
of O(1). So, to perform an operation on a region only depends on the number of polygons in the 
grid cells that intersect with that region, but not on the overall number of polygons.

On initialization the density of the grid (the size of the cells) has to be defined. The smaller a  
cell, the less polygons it intersects. This makes accessing polygons at random positions more 
efficient. However, the smaller a cell, the more cells there are and the more cells link to one and  
the same polygon which in turn needs to link back to the cells (see above). This does not only  
lead to a higher memory usage but also slows down any operation that alters the landscape 
because the references between the altered polygons and the grid need to be updated. The more  
cells and polygons that need to be updated, the longer the process takes: if a polygon that spans 
over 10 x 10 cells is deleted, 100 references to the polygon need to be deleted from the grid  
cells (as well as 100 references to the grid cells in the polygon).

Determining an optimal grid density is a difficult task because the polygons can be very differ -
ent in size and in number of edges at different areas of the landscape. Regardless of which cell  
size has been defined, some polygons might span over dozens of cells while others might share  
one cell with dozens of other polygons. So in areas with big polygons the cells should be larger,  
whereas in areas where many small (and detailed) polygons are crammed together, the cells  
should be smaller. Figure 42 shows an example of this arrangement:

Polygon A spans over four grid cells while for 
example the upper right cell (of the ones A is 
in)  only  intersects  with  two  polygons. 
However  the  cell  in  which  polygon  B is 
contained in links to eleven polygons, most of 
which have a lot of edges compared to their 
size. Thus, one problem of this data structure 
is that the cells in the grid have a static size. It 
is not possible to define different sizes for the 
cells in different areas of the landscape.

Also, once the density of the grid has been 
defined, it can't be changed anymore without 
completely rebuilding the data structure. This 
can become a problem because it can lead to 
notable  differences  in  performance  on  the 
access  on  different  areas  of  the  landscape. 
This  is  undesirable  for  an  application  that 
should  run  in  real-time,  especially  if  one 
keeps in mind that during runtime, the land-
scape can change continuously:  If  the land-
scape is clipped in the same area with differ-
ent polygons repeatedly, the total number of 
edges in that area tends to increase because 
the  boundaries  of  the  polygons  get  more 
detailed (as in short but numerous edges).

Figure  42:  A  two  dimensional  landscape  
shown with a uniform grid. Two polygons (A  
and B) are highlighted.
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Since  any polygon  could  be  referenced  by 
several grid cells, it must be ensured that the 
same polygon is not included twice in opera-
tions that deal with the polygons of more than 
one cell (like an intersection check with a line 
or a clipping operation).

For  this  reason,  it  makes  sense  to  cut  the 
polygons along the grid as  shown in figure 
43. After doing this, no two cells in the grid 
link to the same polygon anymore. Thus, one 
cell does not link to all polygons that  inter-
sect with it but it links to all polygons that are 
contained in it which effectively makes a grid 
cell a bounding box of the (set of) polygons it 
contains.

However, this does not solve the problem of 
the static grid size.

4.5 Trees

A tree is a hierarchical data structure which can solve this problem. Specifically, trees that parti -
tion a two dimensional space recursively into smaller regions overcome the limit of the static  
cell size in a grid.

4.5.1 Storing point data
A quadtree is a tree data structure in which each node that is no leaf has four children. A leaf 
node has no children and represents a cell in this context, thus holds the spatial data. When a  
previously defined maximum capacity of a leaf has been reached, its underlying space is split up  
into four new cells - one to the upper left (also referred as northwest), upper right (northeast),  
lower left (southwest) and lower right (southeast). The former leaf node now has four children 
by himself. If data inside the cells is deleted, this can of course also be done in reverse so that  
the tree always adapts to changes in the landscape.

Because of this property, quadtrees are eligible to represent cells that are variable in size and  
thus  different  densities  throughout  the  landscape.  However,  the  average time complexity to 
access a specific cell in a quadtree is usually O(log n) (where n is the number of elements stored 
in it) as opposed to the constant time complexity in a grid.

Originally, Finkel and Bentley introduced quadtrees as a data structure that stores two dimen-
sional  point  data,  point  quadtrees [B1].  In their  approach,  each node itself  stores one point 
which at the same time defines the center of the space underlying that node. The vertical and 
horizontal division lines are drawn from that center. A quadtree which always decomposes its  
underlying space into cells of equal size and thus only stores the point data in its leafs has been 
described as a  PR quadtree by Hamet [S5] (P stands for point, R for region). The difference 
between these two quadtrees is shown in figures 44 and 45.

As the structure of a PR quadtree is not dependent on the location of the points inside of it, it is 
more eligible to work with data that changes continuously even though it tends to have a higher 
depth than the point quadtree with the same maximum capacity.

Figure  43:The  polygon  landscape  split  up  
on the grid
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The kD tree which holds point data (2D tree for two dimensional data) has been introduced by 
Bentley [B2]. Like the quadtree, it is also based on a recursive partition of space. However, for 
each level in the tree, the space is only subdivided into two sides. So, per level, each one dimen-
sion is cycled through: For example, in a 2D tree the plane is split into two along the x-axis on 
the first level, along the y-axis on the second level, again along the x-axis on the third level etc.

A kD tree is less wide but usually has a higher depth than a quadtree. Rosenberg compared the 
memory usage and overall performance of a kD tree with that of a quadtree [R3]. He concluded 
that it is more expensive in terms of memory (but only by a constant factor) and, more import-
antly, outperforms the quadtree at region searching and particularly in point searches (less nodes 
are visited). The average time complexity of a kD tree is the same as for a quadtree.

Figure  45: A PR quadtree with the same point data. The maximum capacity of a cell in this  
example is 1. (a) shows the partition of space and (b) the representation of the points in the tree.  
The bordered squares and circles stand for empty (leaf) nodes.

Figure  44: A point quadtree with some point data.  The maximum capacity of  a cell  in this  
example is 1. (a) shows the partition of space and (b) the representation of the points in the tree.  
The bordered squares stand for empty leaf nodes.
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Like the point quadtree, the kD tree has been designed to store a point in each node and perform 
the subdivision at that point. So, a PR kD tree is a kD tree in which each node splits the space 
into two evenly sized sides as shown in figure 46.

4.5.2 Storing rectangle data
So far, only tree data structures that store point data, not rectangle data, have been described. 
However, both presented  PR trees  can be generalized to also be able to store rectangle data: 
Each node of a PR tree that stores rectangles contains a set of rectangles it fully contains. Figure 
47 shows an example for a PR quadtree that stores rectangles.

Figure 46: A PR 2-d tree with again the same point data and a maximum capacity of a cell of 1.  
(a) shows the partition of space and (b) the representation in the tree. The bordered squares and  
circles stand for empty (leaf) nodes.

Figure  47: A PR quadtree used for rectangle data. (a) shows the partition of space while (b)  
shows  the  representation  in  the  quadtree.  The  bordered  squares  stand  for  nodes  with  no  
rectangles inside. 
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The lower a rectangle can be sorted into the tree, the more rectangles can be excluded from a  
point or region query. This must be the goal of the data structure. This is why the region in the  
above example is split up further until no rectangle can be sorted at an even lower position into 
the tree.

This data structure has a problem though: all rectangles that intersect with any of the division 
lines of the cells have to be checked, even if they are far away from the actually queried region.  
If for example a point-in-polygon check is performed on the region around rectangle d in figure 
47, the rectangles g, i, f, c and e have to be checked for containment of the point because these 
are in the upper nodes of the tree. Also, at which level the rectangles are sorted into the PR tree  
is not dependent on their size but on their position. More precisely, the level of the node that  
defines the division line the rectangle intersects with.

Figure 48 illustrates this problem: polygon A will be sorted into a node that is a direct child of 
the root node, despite its small size.

Because a PR kD tree only splits the plane in 
half  per level,  the rectangles are sorted into 
the tree a little bit deeper and thus it does a 
slightly better job at excluding rectangles that 
are not in the queried region. Polygon i from 
figure 47 for example would be stored in the 
second level of the tree instead of in the root 
node if the plane were first split along the x-
axis.

Kedem introduced the quad CIF tree in the 
context of VLSI (very large scale integration) 
technology [K1] in which he offered a solu-
tion to partly tackle this problem. The quad 
CIF tree is a quadtree that functions the same 
way as the PR quadtree described above with 
the only exception that the rectangles which 
are  completely  contained  in  a  cell  are  not 
saved in a list (or set) but in two binary trees 
(also  called  bisector  lists):  roughly,  one 
binary tree with all the rectangles that inter-
sect with the node's horizontal division line sorted by x-coordinates and one binary tree with all  
the rectangles that intersect with the node's vertical division line sorted by y-coordinates. This  
data structure makes it faster to traverse through and discard the excess rectangles. Lai et al.  
described a similar approach for 2D trees (which they call HV/VH trees) [L2].

Another method is to sort the rectangles of each node by their coordinates and use the scanbeam 
algorithm on this level to traverse through them faster. However, both methods don't solve the  
root of the problem: that rectangles are sorted into upper levels of the tree because of their posi -
tion.

So, if the preconditions mentioned in section 3.6.3 are met, a final solution for this problem (in 
this application) is to split the polygon up along the division line(s) of a node just like it is done 
in the grid. Each node and with it all polygons inside of it are split up if a previously defined 
maximum number of edges is reached. This ensures that the size of a cell automatically adapts 
to the state of the landscape. To access a given cell in the landscape takes about the same time  
anywhere on the landscape. Thus, the overall performance of a point query within the landscape  
can be reduced to the traversal through the PR tree that has a depth of O(log n) plus a constant 
factor for the access on a certain cell. This helps to meet the requirement to maintain an even  
processor load during real-time usage of the landscape.

Of course, this is still combinable with any data structure that makes the traversal through the  
bounding boxes in one cell faster.

Figure  48:  A  two  dimensional  landscape  
shown  with  a  quadtree.  Polygon  A  is  
highlighted.
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Even though the access to single cells in a grid is faster than with a tree, the cell size in a grid is 
static and thus there is no upper limit for how long the operation within a cell will take. This is 
why the usage of a tree should be preferred in this application for its ability to dynamically 
adjust the size of each cell; it guarantees that for any given cell, the operation within it will take 
a constant amount of time.

If the polygons in the game world are supposed to describe more than their enclosed regions for 
example if the polygons ought to be subjected to gravity or generally be able to move as a  
whole, they can't be split up arbitrarily. One solution would be to split them up nevertheless but  
let  the pieces of one chunk that ought to stay together during movement link to each other.  
Another solution is to store polygons which should be able move in another data structure than  
the rest of the landscape.

Possible for these polygons are also bucketing-methods like the  R-Tree and derivatives which 
have not been described in this work. See for example Samet [S5] for an explanation.
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5 Conclusion
To create a working polygon-based implementation of a changeable 2D landscape for games is 
not a trivial task. Specifically the implementation of a clipping algorithm (see chapter 3) that is 
also  applicable  for  games  adds  more  complexity  because  of  the  additional  requirements  
mentioned in the introduction, namely to work with integers and to return the same class of  
polygons that it accepts.

Every possible output of a clipping operation needs to be accepted by any other clipping opera-
tion as input. This requires the clipping algorithm to both accept any combination of (weakly) 
simple polygons as well as to fix up any result that is not initially in the set of simple polygons.  
As it turned out, there are many edge cases that need to be considered to fulfill this requirement.  
A clipping operation that for example only accepts simple polygons but in some cases outputs 
certain weakly simple polygons is not acceptable. Additionally, the clipping operation needs to 
function correctly with the limited precision of  integers.  The usage of fixed point  numbers 
instead of floating point numbers revealed a number of problems that already existed for previ-
ous implementations based on floating point numbers but were probably overlooked or deemed 
insignificant (see section 3.3.1).

In an implementation based on integers, it becomes likely that the two polygons intersect each 
other exactly at the end points of one of their edges as well as that the polygons intersect in 
(several) line segments instead of just points. Additionally, edges whose midpoint can not be  
calculated, like for example edges with a length of just one unit one, can become a problem 
since it is not reliable to determine their containment in the other polygon via the point-in-poly-
gon check (see chapter  3.4). The algorithm presented in section 3.4.2 solves this problem but 
only for polygons which do not touch themselves at lines, like simple polygons (cf. section 
3.6.2). Another important issue is that the shape of the polygon can be altered by any insertion 
of a new vertex which can theoretically lead to  any number of new intersections between the 
polygons but  also within the polygon to arise.  This issue has been discussed and solved in 
section 3.3.1. The removal of holes in the set of resulting polygons explained in section 3.6.3 
again requires the usage of clipping operations, both in order to split the polygons along a line 
and to subtract  the holes from those polygons. This too makes the clipping operation more  
complex and more expensive because theoretically any number of holes can arise during a clip-
ping operation.

In chapter 2, the basic algorithms and checks on polygons like the point-in-polygon check, the 
calculation of the size or the intersection of a polygon with a line have been described. These  
algorithms are essential for any implementation of a two dimensional landscape based on poly-
gons,  independent  of  whether  the  landscape should be  changeable  or  not.  Also,  the  use  of  
spacial data structures which have been discussed in chapter 4 are necessary for any landscape 
that is supposed to run real-time and consists of more than a couple of polygons.

To summarize, this thesis offers an approach how to implement a polygon-based landscape that 
can also be changed during the course of the game. This makes it possible to design games that 
have destructible landscapes while still having the benefits of edge-based landscapes over interi-
or-based landscapes. Of course, the implementation is not limited to be used in games since the 
employment  in  games  must  fulfill  additional  requirements  than  previous  edge  labeling 
approaches for polygon clipping, not less.

Thus, the implementation can be used in any other area in which polygon clipping algorithms 
have been used so far and additionally in areas in which the same set of polygons might be  
continuously clipped (in real-time).
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Regarding its application in games, the implementation is only an alternative approach to the 
pixel-based landscape, not a replacement.

The reason is  that  a pixel-based landscape is  still  unbeatable  in  performance for what  it  is  
designed for:  small  but  continuous modifications on the landscape.  The time complexity to 
change areas in a pixel-based landscape behaves linear to the number of pixels that have to be 
changed and is relatively7 independent of the actual size of the whole landscape. To subtract a 
single pixel from the landscape only involves changing a single value in the two-dimensional 
array, thus runs in O(1). To change a single pixel (or, in this case, a tiny square) from a polygon-
based landscape has  the  same time complexity as  any other  clipping operation as  it  is  not 
dependent on the size of area involved but the total number of polygons in the landscape as well  
as the number of edges of the polygons actually involved.

Because the costs to change an area in a pixel-based landscape grows quadratically to its radius  
in pixels ( A=π r2 ), the same operation on a polygon-based landscape can actually be faster for 
very large areas at some point because the number of edges of a polygon is linear to the area it  
encloses ( P=2π r ). However, the normal use case of making changes to the landscape in a  
game involves the continuous subtraction of relatively small areas like digging through the earth 
or making explosions. For this thesis not tests have been commenced to find out how big an 
area would have to be that a clipping operation runs faster in a polygon-based landscape as it  
was beyond the scope of this work. Though, due to the complexity of a single clipping opera-
tion, it is assumed that this would involve areas which are much bigger than anything actually 
used in games.

Typical  simple checks made on the landscape in a game are,  amongst  others,  collision and 
containment checks to find out if a moving object collides with the landscape and whether it is  
contained in a (solid) material.

A collision check in a polygon-based landscape is done by intersecting the current movement 
vector of the object with the polygons in the landscape (see section 2.4) and is thus also depend-
ent on the total number of polygons in the landscape as well as the number of edges of the poly-
gons actually involved. If the line segment intersects with a polygon, the object collided. A 
collision check in a pixel-based landscape works by checking for each pixel between the current  
position of the object and the position plus the movement vector if it is a solid material. If there 
is solid material, the object collided at that point. This check is only dependent on the length of  
the current movement vector in pixels: if an object only moves 3 pixels in a time step, the two-
dimensional array only needs to be accessed 3 times for a complete collision check. Thus, a 
collision check is much faster in a pixel-based landscape than in a polygon-based landscape for  
reasonable speeds of objects. The same applies for a containment check. For a polygon-based 
landscape, a point-in-polygon check needs to be done on the landscape (see section 2.5) while 
for the pixel-based landscape, only a single value in the array needs to be accessed.

However, the primary reason for a landscape based on polygons is not the performance of these 
operations. As mentioned in the introduction, modern physics engines only work with geometric 
shapes like polygons and thus require the landscape to be defined as an edge-based representa-
tion. This is because a physics engine does not only simulate collisions and does containment  
checks. The size, mass and shape of an object must be known to simulate pressure, friction, its  
kinetic energy and generally forces that act on it. 

To calculate the surface at one spot is much simpler with a polygon-based landscape as it is 
already edge-based while the pixel-based landscape is interior-based. The surface (= edge in this  
case)  in  a  pixel-based  landscape  would  have  to  be  searched  by  a  (local)  edge-detection 
algorithm first while it is already available in the polygon-based landscape. The size of a certain 

7 given that the whole landscape fits in the memory so that no page-faults occur
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chunk of material is simply calculated by the Gaussian trapezoid formula (see section 2.2) in a 
polygon-based landscape. In a pixel-based landscape there is not even a clear notion of an inter-
connected material chunk. The edges of the said chunk would have to be searched for first, then, 
every pixel in that chunk would have to be counted separately.

Additionally, it is next to impossible in a pixel-based landscape to actually include the landscape 
itself in the physics simulation. For example, to make certain parts of the landscape fall off,  
move around, float on water and especially rotate is simply not possible in the data structure of  
a two-dimensional array because it is static, like a raster graphic. So, compared to the pixel-
based landscape,  the polygon-based landscape adds new possibilities to make the landscape 
more dynamic. After all, this is one of the reasons why many modern platform games don't use  
the tile-based approach for a landscape anymore. 

This thesis is about a polygon-based landscape with the extension of being able to change it as 
an  alternative  to  a  pixel-based  landscape.  However,  no  direct  comparison  in  performance 
regarding both the modifications and the checks on the landscape between the polygon-based 
and the pixel-based landscape has been made. So the assumptions about the performance made 
in this conclusion are only based on time complexity of these algorithms. It would be interesting 
to  know how the two different  approaches perform in direct  comparison but  as  mentioned 
above, this would have gone beyond the scope of this bachelor thesis.

Also, the optimizations in performance using spatial data structures have not been covered in 
detail, especially in respect to the typical operations done in physics simulations, including for 
example fluid simulation. However, this already reaches into the broad subject of physics simu-
lations in computers in general. This is another topic that could be dealt with in future works.

Apart from the benefits of polygons in physics simulations, there are also a few advantages 
regarding graphics. Like a vector graphic, any edge-based landscape can be zoomed in without  
limitations since the level  of  detail  of  the landscape is  not  chained to the resolution of the 
screen. That is why an edge-based landscape is especially eligible for games that otherwise use 
3D graphics  (as  these are  also based on polygons).  A pixel-based landscape gets  blurry or  
pixelated if zoomed in, like a raster graphic. Also, it should be noted that modern hardware is  
optimized to render polygons. While it is not a problem at all to render the whole pixel-based  
landscape as a texture, a polygon-based landscape adds the possibility to render it more dynam-
ically. As the example Klonoa: Door to Phantomile (see figure 4) shows, the game landscape is 
not  limited  to  be  displayed  orthogonal  to  the  camera  viewing  direction.  Furthermore,  it  is 
possible to use vertex and geometry shaders on the polygons or add certain special effects to 
specific material chunks.

To summarize, a landscape based on polygons is more versatile than a landscape based on a  
two-dimensional array, but at the cost of complexity in implementation and performance.
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